Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/FillArrays.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@ import Base: size, getindex, setindex!, IndexStyle, checkbounds, convert,

import LinearAlgebra: rank, svdvals!, tril, triu, tril!, triu!, diag, transpose, adjoint, fill!,
dot, norm2, norm1, normInf, normMinusInf, normp, lmul!, rmul!, diagzero, AdjointAbsVec, TransposeAbsVec,
issymmetric, ishermitian, AdjOrTransAbsVec, checksquare, mul!, kron, AbstractTriangular
issymmetric, ishermitian, AdjOrTransAbsVec, checksquare, mul!, kron, AbstractTriangular,
eigvecs, eigvals, eigen


import Base.Broadcast: broadcasted, DefaultArrayStyle, broadcast_shape, BroadcastStyle, Broadcasted
Expand Down
38 changes: 38 additions & 0 deletions src/fillalgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -564,3 +564,41 @@ end

triu(A::AbstractZerosMatrix, k::Integer=0) = A
tril(A::AbstractZerosMatrix, k::Integer=0) = A

# eigen
_eigenind(λ0, n, sortby) = (isnothing(sortby) || sortby(λ0) <= sortby(zero(λ0))) ? 1 : n

function eigvals(A::AbstractFillMatrix{<:Union{Real, Complex}}; sortby = nothing)
Base.require_one_based_indexing(A)
n = checksquare(A)
# only one non-trivial eigenvalue for a rank-1 matrix
λ0 = float(getindex_value(A)) * n
ind = _eigenind(λ0, n, sortby)
OneElement(λ0, ind, n)
end

function eigvecs(A::AbstractFillMatrix{<:Union{Real, Complex}}; sortby = nothing)
Base.require_one_based_indexing(A)
n = checksquare(A)
M = similar(A, real(float(eltype(A))))
n == 0 && return M
val = getindex_value(A)
ind = _eigenind(val, n, sortby)
# The non-trivial eigenvector is normalize(ones(n))
M[:, ind] .= inv(sqrt(n))
# eigenvectors corresponding to zero eigenvalues
for (i, j) in enumerate(axes(M,2)[(ind == 1) .+ (1:end-1)])
# The eigenvectors are v = normalize([ones(n-1); -(n-1)]), and sum(v) == 0
# The ordering is arbitrary,
# and we choose to order in terms of the number of non-zero elements
nrm = 1/sqrt(i*(i+1))
M[1:i, j] .= nrm
M[i+1, j] = -i * nrm
M[i+2:end, j] .= zero(eltype(M))
end
return M
end

function eigen(A::AbstractFillMatrix{<:Union{Real, Complex}}; sortby = nothing)
Eigen(eigvals(A; sortby), eigvecs(A; sortby))
end
26 changes: 26 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2984,6 +2984,32 @@ end
@test tril(Z, 2) === Z
end

@testset "eigen" begin
sortby = x -> (real(x), imag(x))
@testset "AbstractFill" begin
sizes = VERSION >= v"1.10" ? (0, 1, 4) : (1, 4)
@testset for val in (2.0, -2, 3+2im, 4 - 5im, 2im), n in sizes
sortby_val = iszero(real(val)) ? imag : sortby
F = Fill(val, n, n)
M = Matrix(F)
@test eigvals(F; sortby = sortby_val) ≈ eigvals(M; sortby = sortby_val)
λ, V = eigen(F; sortby = sortby_val)
@test λ == eigvals(F; sortby = sortby_val)
@test V'V ≈ I
@test F * V ≈ V * Diagonal(λ)
end
@testset for MT in (Ones, Zeros), T in (Float64, Int, ComplexF64), n in sizes
F = MT{T}(n,n)
M = Matrix(F)
@test eigvals(F; sortby) ≈ eigvals(M; sortby)
λ, V = eigen(F; sortby)
@test λ == eigvals(F; sortby)
@test V'V ≈ I
@test F * V ≈ V * Diagonal(λ)
end
end
end

@testset "Diagonal conversion (#389)" begin
@test convert(Diagonal{Int, Vector{Int}}, Zeros(5,5)) isa Diagonal{Int,Vector{Int}}
@test convert(Diagonal{Int, Vector{Int}}, Zeros(5,5)) == zeros(5,5)
Expand Down