Skip to content

Conversation

@GulajavaMinistudio
Copy link
Owner

What changes were proposed in this pull request?

(Please fill in changes proposed in this fix)

How was this patch tested?

(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Please review http://spark.apache.org/contributing.html before opening a pull request.

Seth Hendrickson and others added 11 commits April 4, 2017 17:04
…rsWithSmallWeights

## What changes were proposed in this pull request?

This is a small piece from #16722 which ultimately will add sample weights to decision trees.  This is to allow more flexibility in testing outliers since linear models and trees behave differently.

Note: The primary author when this is committed should be sethah since this is taken from his code.

## How was this patch tested?

Existing tests

Author: Joseph K. Bradley <[email protected]>

Closes #17501 from jkbradley/SPARK-20183.
…generation and transform

## What changes were proposed in this pull request?

jira: https://issues.apache.org/jira/browse/SPARK-20003
I was doing some test and found the issue. ml.fpm.FPGrowthModel `setMinConfidence` should always affect rules generation and transform.
Currently associationRules in FPGrowthModel is a lazy val and `setMinConfidence` in FPGrowthModel has no impact once associationRules got computed .

I try to cache the associationRules to avoid re-computation if `minConfidence` is not changed, but this makes FPGrowthModel somehow stateful. Let me know if there's any concern.

## How was this patch tested?

new unit test and I strength the unit test for model save/load to ensure the cache mechanism.

Author: Yuhao Yang <[email protected]>

Closes #17336 from hhbyyh/fpmodelminconf.
## What changes were proposed in this pull request?

minor update

zero323

Author: Felix Cheung <[email protected]>

Closes #17526 from felixcheung/rfpgrowthfollowup.
…took longer than trigger interval

## What changes were proposed in this pull request?

For large trigger intervals (e.g. 10 minutes), if a batch takes 11 minutes, then it will wait for 9 mins before starting the next batch. This does not make sense. The processing time based trigger policy should be to do process batches as fast as possible, but no faster than 1 in every trigger interval. If batches are taking longer than trigger interval anyways, then no point waiting extra trigger interval.

In this PR, I modified the ProcessingTimeExecutor to do so. Another minor change I did was to extract our StreamManualClock into a separate class so that it can be used outside subclasses of StreamTest. For example, ProcessingTimeExecutorSuite does not need to create any context for testing, just needs the StreamManualClock.

## How was this patch tested?
Added new unit tests to comprehensively test this behavior.

Author: Tathagata Das <[email protected]>

Closes #17525 from tdas/SPARK-20209.
with spark.ui.reverseProxy=true, full path URLs like /log will point to
the master web endpoint which is serving the worker UI as reverse proxy.
To access a REST endpoint in the worker in reverse proxy mode , the
leading /proxy/"target"/ part of the base URI must be retained.

Added logic to log-view.js to handle this, similar to executorspage.js

Patch was tested manually

Author: Oliver Köth <[email protected]>

Closes #17370 from okoethibm/master.
…led using web UI

## What changes were proposed in this pull request?

When a user kills a stage using web UI (in Stages page), StagesTab.handleKillRequest requests SparkContext to cancel the stage without giving a reason. SparkContext has cancelStage(stageId: Int, reason: String) that Spark could use to pass the information for monitoring/debugging purposes.

## How was this patch tested?

manual tests

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: shaolinliu <[email protected]>
Author: lvdongr <[email protected]>

Closes #17258 from shaolinliu/SPARK-19807.
## What changes were proposed in this pull request?

Fix typo in tpcds q77.sql

## How was this patch tested?

N/A

Author: wangzhenhua <[email protected]>

Closes #17538 from wzhfy/typoQ77.
## What changes were proposed in this pull request?

- Allows skipping `value` argument if `to_replace` is a `dict`:
	```python
	df = sc.parallelize([("Alice", 1, 3.0)]).toDF()
	df.replace({"Alice": "Bob"}).show()
	````
- Adds validation step to ensure homogeneous values / replacements.
- Simplifies internal control flow.
- Improves unit tests coverage.

## How was this patch tested?

Existing unit tests, additional unit tests, manual testing.

Author: zero323 <[email protected]>

Closes #16793 from zero323/SPARK-19454.
…oupsWithState

## What changes were proposed in this pull request?

- Fixed bug in Java API not passing timeout conf to scala API
- Updated markdown docs
- Updated scala docs
- Added scala and Java example

## How was this patch tested?
Manually ran examples.

Author: Tathagata Das <[email protected]>

Closes #17539 from tdas/SPARK-20224.
…t timezone settings

## What changes were proposed in this pull request?
Make sure SESSION_LOCAL_TIMEZONE reflects the change in JVM's default timezone setting. Currently several timezone related tests fail as the change to default timezone is not picked up by SQLConf.

## How was this patch tested?
Added an unit test in ConfigEntrySuite

Author: Dilip Biswal <[email protected]>

Closes #17537 from dilipbiswal/timezone_debug.
@GulajavaMinistudio GulajavaMinistudio merged commit aa0aecb into GulajavaMinistudio:master Apr 6, 2017
GulajavaMinistudio pushed a commit that referenced this pull request Dec 29, 2019
### Why are the changes needed?
`EnsureRequirements` adds `ShuffleExchangeExec` (RangePartitioning) after Sort if `RoundRobinPartitioning` behinds it. This will cause 2 shuffles, and the number of partitions in the final stage is not the number specified by `RoundRobinPartitioning.

**Example SQL**
```
SELECT /*+ REPARTITION(5) */ * FROM test ORDER BY a
```

**BEFORE**
```
== Physical Plan ==
*(1) Sort [a#0 ASC NULLS FIRST], true, 0
+- Exchange rangepartitioning(a#0 ASC NULLS FIRST, 200), true, [id=#11]
   +- Exchange RoundRobinPartitioning(5), false, [id=#9]
      +- Scan hive default.test [a#0, b#1], HiveTableRelation `default`.`test`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, [a#0, b#1]
```

**AFTER**
```
== Physical Plan ==
*(1) Sort [a#0 ASC NULLS FIRST], true, 0
+- Exchange rangepartitioning(a#0 ASC NULLS FIRST, 5), true, [id=#11]
   +- Scan hive default.test [a#0, b#1], HiveTableRelation `default`.`test`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, [a#0, b#1]
```

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Run suite Tests and add new test for this.

Closes apache#26946 from stczwd/RoundRobinPartitioning.

Lead-authored-by: lijunqing <[email protected]>
Co-authored-by: stczwd <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
GulajavaMinistudio pushed a commit that referenced this pull request Feb 28, 2024
…n properly

### What changes were proposed in this pull request?
Make `ResolveRelations` handle plan id properly

### Why are the changes needed?
bug fix for Spark Connect, it won't affect classic Spark SQL

before this PR:
```
from pyspark.sql import functions as sf

spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1")
spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2")

df1 = spark.read.table("test_table_1")
df2 = spark.read.table("test_table_2")
df3 = spark.read.table("test_table_1")

join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2)
join2 = df3.join(join1, how="left", on=join1.index==df3.id)

join2.schema
```

fails with
```
AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704
```

That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect

```
=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations ===
 '[#12]Join LeftOuter, '`==`('index, 'id)                     '[#12]Join LeftOuter, '`==`('index, 'id)
!:- '[#9]UnresolvedRelation [test_table_1], [], false         :- '[#9]SubqueryAlias spark_catalog.default.test_table_1
!+- '[#11]Project ['index, 'value_2]                          :  +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
!   +- '[#10]Join Inner, '`==`('id, 'index)                   +- '[#11]Project ['index, 'value_2]
!      :- '[#7]UnresolvedRelation [test_table_1], [], false      +- '[#10]Join Inner, '`==`('id, 'index)
!      +- '[#8]UnresolvedRelation [test_table_2], [], false         :- '[#9]SubqueryAlias spark_catalog.default.test_table_1
!                                                                   :  +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
!                                                                   +- '[#8]SubqueryAlias spark_catalog.default.test_table_2
!                                                                      +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false

Can not resolve 'id with plan 7
```

`[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one
```
:- '[#9]SubqueryAlias spark_catalog.default.test_table_1
   +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
```

### Does this PR introduce _any_ user-facing change?
yes, bug fix

### How was this patch tested?
added ut

### Was this patch authored or co-authored using generative AI tooling?
ci

Closes apache#45214 from zhengruifeng/connect_fix_read_join.

Authored-by: Ruifeng Zheng <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
GulajavaMinistudio pushed a commit that referenced this pull request Nov 18, 2025
### What changes were proposed in this pull request?

This PR proposes to add `doCanonicalize` function for DataSourceV2ScanRelation. The implementation is similar to [the one in BatchScanExec](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150), as well as the [the one in LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52).

### Why are the changes needed?

Query optimization rules such as MergeScalarSubqueries check if two plans are identical by [comparing their canonicalized form](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala#L219). For DSv2, for physical plan, the canonicalization goes down in the child hierarchy to the BatchScanExec, which [has a doCanonicalize function](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150); for logical plan, the canonicalization goes down to the DataSourceV2ScanRelation, which, however, does not have a doCanonicalize function. As a result, two logical plans who are semantically identical are not identified.

Moreover, for reference, [DSv1 LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52) also has `doCanonicalize()`.

### Does this PR introduce _any_ user-facing change?

No

### How was this patch tested?

A new unit test is added to show that `MergeScalarSubqueries` is working for DataSourceV2ScanRelation.

For a query
```sql
select (select max(i) from df) as max_i, (select min(i) from df) as min_i
```

Before introducing the canonicalization, the plan is
```
== Parsed Logical Plan ==
'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- 'Project [unresolvedalias('max('i))]
:  :  +- 'UnresolvedRelation [df], [], false
:  +- 'Project [unresolvedalias('min('i))]
:     +- 'UnresolvedRelation [df], [], false
+- OneRowRelation

== Analyzed Logical Plan ==
max_i: int, min_i: int
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- SubqueryAlias df
:  :     +- View (`df`, [i#0, j#1])
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- SubqueryAlias df
:        +- View (`df`, [i#10, j#11])
:           +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Optimized Logical Plan ==
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- Project [i#0]
:  :     +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- Project [i#10]
:        +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
   ResultQueryStage 0
   +- *(1) Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5]
      :  :- Subquery subquery#2, [id=#32]
      :  :  +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58]
                        +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                           +- *(1) Project [i#0]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19]
                  +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                     +- Project [i#0]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      :  +- Subquery subquery#4, [id=#33]
      :     +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63]
                        +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                           +- *(1) Project [i#10]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30]
                  +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                     +- Project [i#10]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      +- *(1) Scan OneRowRelation[]
+- == Initial Plan ==
   Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5]
   :  :- Subquery subquery#2, [id=#32]
   :  :  +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
               +- ShuffleQueryStage 0
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58]
                     +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                        +- *(1) Project [i#0]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
            +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19]
               +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                  +- Project [i#0]
                     +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   :  +- Subquery subquery#4, [id=#33]
   :     +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
               +- ShuffleQueryStage 0
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63]
                     +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                        +- *(1) Project [i#10]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
            +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30]
               +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                  +- Project [i#10]
                     +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   +- Scan OneRowRelation[]
```

After introducing the canonicalization, the plan is as following, where you can see **ReusedSubquery**
```
== Parsed Logical Plan ==
'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- 'Project [unresolvedalias('max('i))]
:  :  +- 'UnresolvedRelation [df], [], false
:  +- 'Project [unresolvedalias('min('i))]
:     +- 'UnresolvedRelation [df], [], false
+- OneRowRelation

== Analyzed Logical Plan ==
max_i: int, min_i: int
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- SubqueryAlias df
:  :     +- View (`df`, [i#0, j#1])
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- SubqueryAlias df
:        +- View (`df`, [i#10, j#11])
:           +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Optimized Logical Plan ==
Project [scalar-subquery#2 [].max(i) AS max_i#3, scalar-subquery#4 [].min(i) AS min_i#5]
:  :- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
:  :  +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9]
:  :     +- Project [i#0]
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
:     +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9]
:        +- Project [i#0]
:           +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
   ResultQueryStage 0
   +- *(1) Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, ReusedSubquery Subquery subquery#2, [id=#40].min(i) AS min_i#5]
      :  :- Subquery subquery#2, [id=#40]
      :  :  +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
                  +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                     +- ShuffleQueryStage 0
                        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71]
                           +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                              +- *(1) Project [i#0]
                                 +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
               +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22]
                     +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                        +- Project [i#0]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      :  +- ReusedSubquery Subquery subquery#2, [id=#40]
      +- *(1) Scan OneRowRelation[]
+- == Initial Plan ==
   Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, Subquery subquery#4, [id=#41].min(i) AS min_i#5]
   :  :- Subquery subquery#2, [id=#40]
   :  :  +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
               +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71]
                        +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                           +- *(1) Project [i#0]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
            +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22]
                  +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                     +- Project [i#0]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   :  +- Subquery subquery#4, [id=#41]
   :     +- AdaptiveSparkPlan isFinalPlan=false
   :        +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
   :           +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
   :              +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=37]
   :                 +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
   :                    +- Project [i#0]
   :                       +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   +- Scan OneRowRelation[]
```

### Was this patch authored or co-authored using generative AI tooling?

No

Closes apache#52529 from yhuang-db/scan-canonicalization.

Authored-by: yhuang-db <[email protected]>
Signed-off-by: Peter Toth <[email protected]>
GulajavaMinistudio pushed a commit that referenced this pull request Nov 18, 2025
…int/Dockerfile` building

### What changes were proposed in this pull request?

This PR aims to add `libwebp-dev` to fix `dev/spark-test-image/lint/Dockerfile` building in both `master` and `branch-4.1`.

### Why are the changes needed?

Currently, `dev/spark-test-image/lint/Dockerfile` fails to build.
- For master branch, it wasn't revealed yet because we use the cached image.
- For `branch-4.1`, it is currently breaking the CIs.
  - https://github.com/apache/spark/tree/branch-4.1
    - https://github.com/apache/spark/actions/runs/19015025991/job/54307102990

```
#9 454.6 -------------------------- [ERROR MESSAGE] ---------------------------
#9 454.6 <stdin>:1:10: fatal error: ft2build.h: No such file or directory
#9 454.6 compilation terminated.
#9 454.6 --------------------------------------------------------------------
#9 454.6 ERROR: configuration failed for package 'ragg'
#9 454.6 * removing '/usr/local/lib/R/site-library/ragg'
```

### Does this PR introduce _any_ user-facing change?

No behavior change.

### How was this patch tested?

Pass the CIs. Especially, `Base image build` job.
- https://github.com/dongjoon-hyun/spark/actions/runs/19018354185/job/54309542386

### Was this patch authored or co-authored using generative AI tooling?

No.

Closes apache#52838 from dongjoon-hyun/SPARK-54140.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

8 participants