|
| 1 | +/* |
| 2 | + * Copyright 2019-2022 Arm Limited and/or its affiliates <[email protected]> |
| 3 | + * |
| 4 | + * SPDX-License-Identifier: Apache-2.0 |
| 5 | + */ |
| 6 | + |
| 7 | +#include "inference_process.hpp" |
| 8 | + |
| 9 | +#include <tensorflow/lite/micro/all_ops_resolver.h> |
| 10 | +#include <tensorflow/lite/micro/cortex_m_generic/debug_log_callback.h> |
| 11 | +#include <tensorflow/lite/micro/micro_error_reporter.h> |
| 12 | +#include <tensorflow/lite/micro/micro_interpreter.h> |
| 13 | +#include <tensorflow/lite/micro/micro_profiler.h> |
| 14 | +#include <tensorflow/lite/schema/schema_generated.h> |
| 15 | + |
| 16 | +#include <cmsis_compiler.h> |
| 17 | +#include <inttypes.h> |
| 18 | +#include <zephyr/kernel.h> |
| 19 | + |
| 20 | +using namespace std; |
| 21 | + |
| 22 | +namespace |
| 23 | +{ |
| 24 | +bool copyOutput(const TfLiteTensor &src, InferenceProcess::DataPtr &dst) |
| 25 | +{ |
| 26 | + if (dst.data == nullptr) { |
| 27 | + return false; |
| 28 | + } |
| 29 | + |
| 30 | + if (src.bytes > dst.size) { |
| 31 | + printk("Tensor size mismatch (bytes): actual=%d, expected%d.\n", src.bytes, |
| 32 | + dst.size); |
| 33 | + return true; |
| 34 | + } |
| 35 | + |
| 36 | + copy(src.data.uint8, src.data.uint8 + src.bytes, static_cast<uint8_t *>(dst.data)); |
| 37 | + dst.size = src.bytes; |
| 38 | + |
| 39 | + return false; |
| 40 | +} |
| 41 | + |
| 42 | +} /* namespace */ |
| 43 | + |
| 44 | +namespace InferenceProcess |
| 45 | +{ |
| 46 | +DataPtr::DataPtr(void *_data, size_t _size) : data(_data), size(_size) |
| 47 | +{ |
| 48 | +} |
| 49 | + |
| 50 | +void DataPtr::invalidate() |
| 51 | +{ |
| 52 | +#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) |
| 53 | + SCB_InvalidateDCache_by_Addr(reinterpret_cast<uint32_t *>(data), size); |
| 54 | +#endif |
| 55 | +} |
| 56 | + |
| 57 | +void DataPtr::clean() |
| 58 | +{ |
| 59 | +#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) |
| 60 | + SCB_CleanDCache_by_Addr(reinterpret_cast<uint32_t *>(data), size); |
| 61 | +#endif |
| 62 | +} |
| 63 | + |
| 64 | +InferenceJob::InferenceJob() |
| 65 | +{ |
| 66 | +} |
| 67 | + |
| 68 | +InferenceJob::InferenceJob(const string &_name, const DataPtr &_networkModel, |
| 69 | + const vector<DataPtr> &_input, const vector<DataPtr> &_output, |
| 70 | + const vector<DataPtr> &_expectedOutput) |
| 71 | + : name(_name), networkModel(_networkModel), input(_input), output(_output), |
| 72 | + expectedOutput(_expectedOutput) |
| 73 | +{ |
| 74 | +} |
| 75 | + |
| 76 | +void InferenceJob::invalidate() |
| 77 | +{ |
| 78 | + networkModel.invalidate(); |
| 79 | + |
| 80 | + for (auto &it : input) { |
| 81 | + it.invalidate(); |
| 82 | + } |
| 83 | + |
| 84 | + for (auto &it : output) { |
| 85 | + it.invalidate(); |
| 86 | + } |
| 87 | + |
| 88 | + for (auto &it : expectedOutput) { |
| 89 | + it.invalidate(); |
| 90 | + } |
| 91 | +} |
| 92 | + |
| 93 | +void InferenceJob::clean() |
| 94 | +{ |
| 95 | + networkModel.clean(); |
| 96 | + |
| 97 | + for (auto &it : input) { |
| 98 | + it.clean(); |
| 99 | + } |
| 100 | + |
| 101 | + for (auto &it : output) { |
| 102 | + it.clean(); |
| 103 | + } |
| 104 | + |
| 105 | + for (auto &it : expectedOutput) { |
| 106 | + it.clean(); |
| 107 | + } |
| 108 | +} |
| 109 | + |
| 110 | +bool InferenceProcess::runJob(InferenceJob &job) |
| 111 | +{ |
| 112 | + /* Get model handle and verify that the version is correct */ |
| 113 | + const tflite::Model *model = ::tflite::GetModel(job.networkModel.data); |
| 114 | + if (model->version() != TFLITE_SCHEMA_VERSION) { |
| 115 | + printk("Model schema version unsupported: version=%" PRIu32 ", supported=%d.\n", |
| 116 | + model->version(), TFLITE_SCHEMA_VERSION); |
| 117 | + return true; |
| 118 | + } |
| 119 | + |
| 120 | + /* Create the TFL micro interpreter */ |
| 121 | + tflite::AllOpsResolver resolver; |
| 122 | + tflite::MicroErrorReporter errorReporter; |
| 123 | + |
| 124 | + tflite::MicroInterpreter interpreter(model, resolver, tensorArena, tensorArenaSize, |
| 125 | + &errorReporter); |
| 126 | + |
| 127 | + /* Allocate tensors */ |
| 128 | + TfLiteStatus allocate_status = interpreter.AllocateTensors(); |
| 129 | + if (allocate_status != kTfLiteOk) { |
| 130 | + printk("Failed to allocate tensors for inference. job=%p\n", &job); |
| 131 | + return true; |
| 132 | + } |
| 133 | + |
| 134 | + if (job.input.size() != interpreter.inputs_size()) { |
| 135 | + printk("Number of job and network inputs do not match. input=%zu, network=%zu\n", |
| 136 | + job.input.size(), interpreter.inputs_size()); |
| 137 | + return true; |
| 138 | + } |
| 139 | + |
| 140 | + /* Copy input data */ |
| 141 | + for (size_t i = 0; i < interpreter.inputs_size(); ++i) { |
| 142 | + const DataPtr &input = job.input[i]; |
| 143 | + const TfLiteTensor *tensor = interpreter.input(i); |
| 144 | + |
| 145 | + if (input.size != tensor->bytes) { |
| 146 | + printk("Input tensor size mismatch. index=%zu, input=%zu, network=%u\n", i, |
| 147 | + input.size, tensor->bytes); |
| 148 | + return true; |
| 149 | + } |
| 150 | + |
| 151 | + copy(static_cast<char *>(input.data), static_cast<char *>(input.data) + input.size, |
| 152 | + tensor->data.uint8); |
| 153 | + } |
| 154 | + |
| 155 | + /* Run the inference */ |
| 156 | + TfLiteStatus invoke_status = interpreter.Invoke(); |
| 157 | + if (invoke_status != kTfLiteOk) { |
| 158 | + printk("Invoke failed for inference. job=%s\n", job.name.c_str()); |
| 159 | + return true; |
| 160 | + } |
| 161 | + |
| 162 | + /* Copy output data */ |
| 163 | + if (job.output.size() > 0) { |
| 164 | + if (interpreter.outputs_size() != job.output.size()) { |
| 165 | + printk("Number of job and network outputs do not match. job=%zu, network=%u\n", |
| 166 | + job.output.size(), interpreter.outputs_size()); |
| 167 | + return true; |
| 168 | + } |
| 169 | + |
| 170 | + for (unsigned i = 0; i < interpreter.outputs_size(); ++i) { |
| 171 | + if (copyOutput(*interpreter.output(i), job.output[i])) { |
| 172 | + return true; |
| 173 | + } |
| 174 | + } |
| 175 | + } |
| 176 | + |
| 177 | + if (job.expectedOutput.size() > 0) { |
| 178 | + if (job.expectedOutput.size() != interpreter.outputs_size()) { |
| 179 | + printk("Number of job and network expected outputs do not match. job=%zu, network=%zu\n", |
| 180 | + job.expectedOutput.size(), interpreter.outputs_size()); |
| 181 | + return true; |
| 182 | + } |
| 183 | + |
| 184 | + for (unsigned int i = 0; i < interpreter.outputs_size(); i++) { |
| 185 | + const DataPtr &expected = job.expectedOutput[i]; |
| 186 | + const TfLiteTensor *output = interpreter.output(i); |
| 187 | + |
| 188 | + if (expected.size != output->bytes) { |
| 189 | + printk("Expected output tensor size mismatch. index=%u, expected=%zu, network=%zu\n", |
| 190 | + i, expected.size, output->bytes); |
| 191 | + return true; |
| 192 | + } |
| 193 | + |
| 194 | + for (unsigned int j = 0; j < output->bytes; ++j) { |
| 195 | + if (output->data.uint8[j] != |
| 196 | + static_cast<uint8_t *>(expected.data)[j]) { |
| 197 | + printk("Expected output tensor data mismatch. index=%u, offset=%u, expected=%02x, network=%02x\n", |
| 198 | + i, j, static_cast<uint8_t *>(expected.data)[j], |
| 199 | + output->data.uint8[j]); |
| 200 | + return true; |
| 201 | + } |
| 202 | + } |
| 203 | + } |
| 204 | + } |
| 205 | + |
| 206 | + return false; |
| 207 | +} |
| 208 | + |
| 209 | +} /* namespace InferenceProcess */ |
0 commit comments