@@ -49,7 +49,7 @@ def get_dummy_components(self):
4949 torch .manual_seed (0 )
5050 unet = UNet2DConditionModel (
5151 block_out_channels = (32 , 64 ),
52- layers_per_block = 2 ,
52+ layers_per_block = 1 ,
5353 sample_size = 32 ,
5454 in_channels = 4 ,
5555 out_channels = 4 ,
@@ -101,7 +101,7 @@ def get_dummy_inputs(self, device, seed=0):
101101 # Setting height and width to None to prevent OOMs on CPU.
102102 "height" : None ,
103103 "width" : None ,
104- "num_inference_steps" : 2 ,
104+ "num_inference_steps" : 1 ,
105105 "guidance_scale" : 6.0 ,
106106 "output_type" : "numpy" ,
107107 }
@@ -119,10 +119,18 @@ def test_stable_diffusion_panorama_default_case(self):
119119 image_slice = image [0 , - 3 :, - 3 :, - 1 ]
120120 assert image .shape == (1 , 64 , 64 , 3 )
121121
122- expected_slice = np .array ([0.4794 , 0.5084 , 0.4992 , 0.3941 , 0.3555 , 0.4754 , 0.5248 , 0.5224 , 0.4839 ])
122+ expected_slice = np .array ([0.6186 , 0.5374 , 0.4915 , 0.4135 , 0.4114 , 0.4563 , 0.5128 , 0.4977 , 0.4757 ])
123123
124124 assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
125125
126+ # override to speed the overall test timing up.
127+ def test_inference_batch_consistent (self ):
128+ super ().test_inference_batch_consistent (batch_sizes = [1 , 2 ])
129+
130+ # override to speed the overall test timing up.
131+ def test_inference_batch_single_identical (self ):
132+ super ().test_inference_batch_single_identical (batch_size = 2 )
133+
126134 def test_stable_diffusion_panorama_negative_prompt (self ):
127135 device = "cpu" # ensure determinism for the device-dependent torch.Generator
128136 components = self .get_dummy_components ()
@@ -138,7 +146,7 @@ def test_stable_diffusion_panorama_negative_prompt(self):
138146
139147 assert image .shape == (1 , 64 , 64 , 3 )
140148
141- expected_slice = np .array ([0.5029 , 0.5075 , 0.5002 , 0.3965 , 0.3584 , 0.4746 , 0.5271 , 0.5273 , 0.4877 ])
149+ expected_slice = np .array ([0.6187 , 0.5375 , 0.4915 , 0.4136 , 0.4114 , 0.4563 , 0.5128 , 0.4976 , 0.4757 ])
142150
143151 assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
144152
@@ -158,7 +166,7 @@ def test_stable_diffusion_panorama_euler(self):
158166
159167 assert image .shape == (1 , 64 , 64 , 3 )
160168
161- expected_slice = np .array ([0.4934 , 0.5455 , 0.4847 , 0.5022 , 0.5572 , 0.4833 , 0.5207 , 0.4952 , 0.5051 ])
169+ expected_slice = np .array ([0.4886 , 0.5586 , 0.4476 , 0.5053 , 0.6013 , 0.4737 , 0.5538 , 0.5100 , 0.4927 ])
162170
163171 assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
164172
0 commit comments