@@ -150,7 +150,7 @@ def run(self, p, compute_device, model_type, net_width, net_height, match_size,
150150 inputimages = []
151151 for count in range (0 , len (processed .images )):
152152 # skip first grid image
153- if count == 0 and len (processed .images ) > 1 :
153+ if count == 0 and len (processed .images ) > 1 and opts . return_grid :
154154 continue
155155 inputimages .append (processed .images [count ])
156156
@@ -407,10 +407,10 @@ def run_depthmap(processed, outpath, inputimages, inputnames, compute_device, mo
407407 #applying background masks after depth
408408 if background_removal :
409409 print ('applying background masks' )
410- background_removed_image = background_removed_images [count - 1 ]
410+ background_removed_image = background_removed_images [count ]
411411 #maybe a threshold cut would be better on the line below.
412412 background_removed_array = np .array (background_removed_image )
413- bg_mask = (background_removed_array [:,:,0 ]== 0 )| (background_removed_array [:,:,1 ]== 0 )| (background_removed_array [:,:,2 ]== 0 )
413+ bg_mask = (background_removed_array [:,:,0 ]== 0 )& (background_removed_array [:,:,1 ]== 0 )& (background_removed_array [:,:,2 ]== 0 ) & ( background_removed_array [:,:, 3 ] <= 0.2 )
414414 far_value = 255 if invert_depth else 0
415415
416416 img_output [bg_mask ] = far_value * far_value #255*255 or 0*0
@@ -1345,9 +1345,6 @@ def batched_background_removal(inimages, model_name):
13451345 #starting a session
13461346 background_removal_session = new_session (model_name )
13471347 for count in range (0 , len (inimages )):
1348- # skip first grid image
1349- if count == 0 and len (inimages ) > 1 :
1350- continue
13511348 bg_remove_img = np .array (remove (inimages [count ], session = background_removal_session ))
13521349 outimages .append (Image .fromarray (bg_remove_img ))
13531350 #The line below might be redundant
0 commit comments