diff --git a/tensorflow_addons/layers/optical_flow_test.py b/tensorflow_addons/layers/optical_flow_test.py old mode 100644 new mode 100755 index 7dedd49f50..13e4845f7a --- a/tensorflow_addons/layers/optical_flow_test.py +++ b/tensorflow_addons/layers/optical_flow_test.py @@ -19,7 +19,7 @@ import numpy as np import tensorflow as tf -from tensorflow_addons.layers.optical_flow import correlation_cost, CorrelationCost +from tensorflow_addons.layers.optical_flow import CorrelationCost from tensorflow_addons.utils import test_utils @@ -31,15 +31,13 @@ def _forward(self, input_a, input_b, kernel_size, max_displacement, input_a_op = tf.convert_to_tensor(input_a, dtype=tf.float32) input_b_op = tf.convert_to_tensor(input_b, dtype=tf.float32) - output = correlation_cost( - input_a_op, - input_b_op, + output = CorrelationCost( kernel_size=kernel_size, max_displacement=max_displacement, stride_1=stride_1, stride_2=stride_2, pad=pad, - data_format=data_format) + data_format=data_format)([input_a_op, input_b_op]) return output @@ -117,15 +115,13 @@ def _gradients(self, data_format): input_b_op = tf.convert_to_tensor(input_b) def correlation_fn(input_a, input_b): - return correlation_cost( - input_a, - input_b, + return CorrelationCost( kernel_size=kernel_size, max_displacement=max_displacement, stride_1=stride_1, stride_2=stride_2, pad=pad, - data_format=data_format) + data_format=data_format)([input_a, input_b]) theoretical, numerical = tf.test.compute_gradient( correlation_fn, [input_a_op, input_b_op])