diff --git a/tensorflow_addons/image/dense_image_warp_test.py b/tensorflow_addons/image/dense_image_warp_test.py index 6810d6a936..872dd3f6b5 100644 --- a/tensorflow_addons/image/dense_image_warp_test.py +++ b/tensorflow_addons/image/dense_image_warp_test.py @@ -204,7 +204,7 @@ def test_gradients_exist(self): interp = dense_image_warp(image, flows) loss = tf.math.reduce_mean(tf.math.square(interp - image)) - optimizer = tf.optimizers.Adam(1.0) + optimizer = tf.keras.optimizers.Adam(1.0) grad = tf.gradients(loss, [flows]) opt_func = optimizer.apply_gradients(zip(grad, [flows])) init_op = tf.compat.v1.global_variables_initializer() diff --git a/tensorflow_addons/layers/wrappers_test.py b/tensorflow_addons/layers/wrappers_test.py index 46cb997eb6..9d83bbec50 100644 --- a/tensorflow_addons/layers/wrappers_test.py +++ b/tensorflow_addons/layers/wrappers_test.py @@ -66,7 +66,8 @@ def test_weightnorm_conv2d(self): model.add(tf.keras.layers.Activation('relu')) model.compile( - optimizer=tf.optimizers.RMSprop(learning_rate=0.001), loss='mse') + optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.001), + loss='mse') model.fit( np.random.random((2, 4, 4, 3)), np.random.random((2, 4, 4, 5)), diff --git a/tensorflow_addons/optimizers/weight_decay_optimizers_test.py b/tensorflow_addons/optimizers/weight_decay_optimizers_test.py index a4c203975c..fc22aa0c56 100644 --- a/tensorflow_addons/optimizers/weight_decay_optimizers_test.py +++ b/tensorflow_addons/optimizers/weight_decay_optimizers_test.py @@ -269,7 +269,7 @@ class ExtendWithWeightDecayTest(SGDWTest): """Verify that the factory function SGDW is the same as SGDW.""" optimizer = weight_decay_optimizers.extend_with_decoupled_weight_decay( - tf.optimizers.SGD) + tf.keras.optimizers.SGD) if __name__ == "__main__":