diff --git a/tensorflow_addons/layers/normalizations_test.py b/tensorflow_addons/layers/normalizations_test.py index 1253d56790..4d4b9fb251 100644 --- a/tensorflow_addons/layers/normalizations_test.py +++ b/tensorflow_addons/layers/normalizations_test.py @@ -180,10 +180,6 @@ def _create_and_fit_Sequential_model(self, layer, shape): model.fit(x=input_batch, y=output_batch, epochs=1, batch_size=1) return model - def test_axis_error(self): - with self.assertRaises(ValueError): - GroupNormalization(axis=0) - def test_groupnorm_flat(self): # Check basic usage of groupnorm_flat # Testing for 1 == LayerNorm, 16 == GroupNorm, -1 == InstanceNorm @@ -219,22 +215,29 @@ def test_initializer(self): negativ = weights[weights < 0.0] self.assertTrue(len(negativ) == 0) - def test_groupnorm_conv(self): - # Check if Axis is working for CONV nets - # Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm - np.random.seed(0x2020) - groups = [-1, 5, 1] - for i in groups: - model = tf.keras.models.Sequential() - model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3))) - model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same")) - model.add(tf.keras.layers.Flatten()) - model.add(tf.keras.layers.Dense(1, activation="softmax")) - model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse") - x = np.random.randint(1000, size=(10, 20, 20, 3)) - y = np.random.randint(1000, size=(10, 1)) - model.fit(x=x, y=y, epochs=1) - self.assertTrue(hasattr(model.layers[0], "gamma")) + +def test_axis_error(): + with pytest.raises(ValueError): + GroupNormalization(axis=0) + + +@pytest.mark.usefixtures("maybe_run_functions_eagerly") +def test_groupnorm_conv(): + # Check if Axis is working for CONV nets + # Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm + np.random.seed(0x2020) + groups = [-1, 5, 1] + for i in groups: + model = tf.keras.models.Sequential() + model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3))) + model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same")) + model.add(tf.keras.layers.Flatten()) + model.add(tf.keras.layers.Dense(1, activation="softmax")) + model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse") + x = np.random.randint(1000, size=(10, 20, 20, 3)) + y = np.random.randint(1000, size=(10, 1)) + model.fit(x=x, y=y, epochs=1) + assert hasattr(model.layers[0], "gamma") @pytest.mark.usefixtures("maybe_run_functions_eagerly")