
Parse Time Operator
Status: draft
Author: helin

Last update: 2019-09-09

Objective
Introduce an operator that parses a timestamp string with the given format into the Unix time
representation, the number of seconds / milliseconds / microseconds / nanoseconds elapsed
since January 1, 1970 UTC.

For example, “2019-05-17T23:56:09.05Z” with the format “%Y-%m-%dT%H:%M:%E*S%Ez”
gets parsed into 1558137369, when the output unit is set to SECOND.

Motivation

Unix timestamp is widely used in ML models, especially time-series models. However, the raw
timestamp is often represented in string formats (found in logs, ​database tables​, etc) such as
“2019-05-17T23:56:09.05Z”. Currently, a preprocessing step (​example​) outside of the TF graph
is required to convert the timestamp string to the unix timestamp.

User Benefit

Being able to parse timestamp string inside the TF graph helps moving all the preprocessing
logic into the TF graph. Having all the preprocessing logic in the TF graph has the following
benefits:

Simplify training and serving
No preprocessing step is required. For example, the exported ​saved model​ can be used with ​TF
serving​ for serving directly, no need to preprocess the raw data before sending prediction
request to TF serving.

Avoid potential training serving skew
Preprocessing code for training and serving might not be a shared single piece of code. For
example, training preprocessing could be written in Python for ease of use, and inference
preprocessing code could be written C++ for performance. Duplicate code might introduce
subtle behavior differences, causing training serving skew.

https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#datetime-type
https://stackoverflow.com/questions/47408427/tensorflow-timeseries-data-import-with-datetime/49818727#49818727
https://www.tensorflow.org/guide/saved_model
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving

Improve the backward compatibility story
If the model’s input expectation changes, the custom preprocessing binary used for serving
needs to handle both old and new expectations, in order to be backward compatible with the old
models.
For example, without the parse time operator, when users decide to train the model with unix
timestamp in milliseconds rather than seconds. The custom code that converts timestamp string
to unix timestamp needs to be handle both cases, to support both old and new models. On the
contrary, with the parse time operator, converting to milliseconds or seconds is baked as an
attribute of the operator in the TF graph. There is no custom binary required, so no need to
worry about backward compatibility.

Design Proposal
The Abseil library that TensorFlow depends on has a ​parse time function​:

bool​ ​ParseTime​(​const​ std​::​string​&​ format​,​ ​const​ std​::​string​&​ input​,​ ​Time​*​ time​,
std​::​string​*​ err​);

The parse time operator will mostly be a wrapper around it. The difference will be
absl::ParseTime​ outputs ​absl::Time​, and the parse time operator outputs ​int64​ timestamp
with the specified unit in second, millisecond, microsecond or nanosecond:

REGISTER_OP​(​"ParseTime"​)
.​Input​(​"time_string: string"​)
 ​.​Output​(​"time_int64: int64"​)
 ​.​Attr​(​"time_format: string"​)
 ​.​Attr​(​"output_unit: {'SECOND', 'MILLISECOND', 'MICROSECOND', 'NANOSECOND'}"​)
 ​.​SetShapeFn​(​tensorflow​::​shape_inference​::​UnchangedShape​)

Internally, the parse time operator converts ​absl::Time​ to ​int64​ using
absl::ToUnixSeconds​, ​absl::ToUnixMillis​, etc:

switch​ ​(​output_unit_​)​ ​{
 ​case​ SECOND​:
 output_flat​(​i​)​ ​=​ absl​::​ToUnixSeconds​(​time​);
 ​break​;
 ​case​ MILLISECOND​:
 output_flat​(​i​)​ ​=​ absl​::​ToUnixMillis​(​time​);
 ​break​;
 ​case​ MICROSECOND​:
 output_flat​(​i​)​ ​=​ absl​::​ToUnixMicros​(​time​);

https://github.com/abseil/abseil-cpp/blob/master/absl/time/time.h#L1253-L1302

 ​break​;
 ​case​ NANOSECOND​:
 output_flat​(​i​)​ ​=​ absl​::​ToUnixNanos​(​time​);
 ​break​;
}

