Skip to content

Commit 874c988

Browse files
authored
Move test out of run_all_in_graph_and_eager_mode in normalizations_test (#1511)
1 parent 04e3b7f commit 874c988

File tree

1 file changed

+23
-20
lines changed

1 file changed

+23
-20
lines changed

tensorflow_addons/layers/normalizations_test.py

Lines changed: 23 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -180,10 +180,6 @@ def _create_and_fit_Sequential_model(self, layer, shape):
180180
model.fit(x=input_batch, y=output_batch, epochs=1, batch_size=1)
181181
return model
182182

183-
def test_axis_error(self):
184-
with self.assertRaises(ValueError):
185-
GroupNormalization(axis=0)
186-
187183
def test_groupnorm_flat(self):
188184
# Check basic usage of groupnorm_flat
189185
# Testing for 1 == LayerNorm, 16 == GroupNorm, -1 == InstanceNorm
@@ -219,22 +215,29 @@ def test_initializer(self):
219215
negativ = weights[weights < 0.0]
220216
self.assertTrue(len(negativ) == 0)
221217

222-
def test_groupnorm_conv(self):
223-
# Check if Axis is working for CONV nets
224-
# Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm
225-
np.random.seed(0x2020)
226-
groups = [-1, 5, 1]
227-
for i in groups:
228-
model = tf.keras.models.Sequential()
229-
model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3)))
230-
model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same"))
231-
model.add(tf.keras.layers.Flatten())
232-
model.add(tf.keras.layers.Dense(1, activation="softmax"))
233-
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse")
234-
x = np.random.randint(1000, size=(10, 20, 20, 3))
235-
y = np.random.randint(1000, size=(10, 1))
236-
model.fit(x=x, y=y, epochs=1)
237-
self.assertTrue(hasattr(model.layers[0], "gamma"))
218+
219+
def test_axis_error():
220+
with pytest.raises(ValueError):
221+
GroupNormalization(axis=0)
222+
223+
224+
@pytest.mark.usefixtures("maybe_run_functions_eagerly")
225+
def test_groupnorm_conv():
226+
# Check if Axis is working for CONV nets
227+
# Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm
228+
np.random.seed(0x2020)
229+
groups = [-1, 5, 1]
230+
for i in groups:
231+
model = tf.keras.models.Sequential()
232+
model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3)))
233+
model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same"))
234+
model.add(tf.keras.layers.Flatten())
235+
model.add(tf.keras.layers.Dense(1, activation="softmax"))
236+
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse")
237+
x = np.random.randint(1000, size=(10, 20, 20, 3))
238+
y = np.random.randint(1000, size=(10, 1))
239+
model.fit(x=x, y=y, epochs=1)
240+
assert hasattr(model.layers[0], "gamma")
238241

239242

240243
@pytest.mark.usefixtures("maybe_run_functions_eagerly")

0 commit comments

Comments
 (0)