@@ -31,7 +31,10 @@ def test_run():
3131
3232 grads_and_vars = list (zip ([grads0 , grads1 ], [var0 , var1 ]))
3333
34- opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
34+ if hasattr (tf .keras .optimizers , "legacy" ):
35+ opt = MovingAverage (tf .keras .optimizers .legacy .SGD (lr = 2.0 ), average_decay = 0.5 )
36+ else :
37+ opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
3538
3639 opt .apply_gradients (grads_and_vars )
3740 opt .apply_gradients (grads_and_vars )
@@ -95,7 +98,10 @@ def test_model_weights_update():
9598 )
9699 model .build (input_shape = [1 , 1 ])
97100
98- opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
101+ if hasattr (tf .keras .optimizers , "legacy" ):
102+ opt = MovingAverage (tf .keras .optimizers .legacy .SGD (lr = 2.0 ), average_decay = 0.5 )
103+ else :
104+ opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
99105 _ = opt .apply_gradients (list (zip ([grad ], model .variables )))
100106 np .testing .assert_allclose (model .variables [0 ].read_value (), [[0.8 ]])
101107 _ = opt .assign_average_vars (model .variables )
@@ -115,8 +121,10 @@ def test_model_dynamic_lr():
115121 ]
116122 )
117123 model .build (input_shape = [1 , 1 ])
118-
119- opt = MovingAverage (tf .keras .optimizers .SGD (lr = 1e-3 ), average_decay = 0.5 )
124+ if hasattr (tf .keras .optimizers , "legacy" ):
125+ opt = MovingAverage (tf .keras .optimizers .legacy .SGD (lr = 1e-3 ), average_decay = 0.5 )
126+ else :
127+ opt = MovingAverage (tf .keras .optimizers .SGD (lr = 1e-3 ), average_decay = 0.5 )
120128 _ = opt .apply_gradients (list (zip ([grad ], model .variables )))
121129 np .testing .assert_allclose (opt .lr .read_value (), 1e-3 )
122130 opt .lr = 1e-4
@@ -129,9 +137,20 @@ def test_optimizer_string():
129137
130138
131139def test_config ():
132- sgd_opt = tf .keras .optimizers .SGD (lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1 )
140+ if hasattr (tf .keras .optimizers , "legacy" ):
141+ sgd_opt = tf .keras .optimizers .legacy .SGD (
142+ lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1
143+ )
144+ else :
145+ sgd_opt = tf .keras .optimizers .SGD (
146+ lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1
147+ )
133148 opt = MovingAverage (
134- sgd_opt , average_decay = 0.5 , num_updates = None , start_step = 5 , dynamic_decay = True
149+ sgd_opt ,
150+ average_decay = 0.5 ,
151+ num_updates = None ,
152+ start_step = 5 ,
153+ dynamic_decay = True ,
135154 )
136155 config = opt .get_config ()
137156
@@ -177,9 +196,20 @@ def test_fit_simple_linear_model():
177196
178197
179198def test_serialization ():
180- sgd_opt = tf .keras .optimizers .SGD (lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1 )
199+ if hasattr (tf .keras .optimizers , "legacy" ):
200+ sgd_opt = tf .keras .optimizers .legacy .SGD (
201+ lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1
202+ )
203+ else :
204+ sgd_opt = tf .keras .optimizers .SGD (
205+ lr = 2.0 , nesterov = True , momentum = 0.3 , decay = 0.1
206+ )
181207 optimizer = MovingAverage (
182- sgd_opt , average_decay = 0.5 , num_updates = None , start_step = 5 , dynamic_decay = True
208+ sgd_opt ,
209+ average_decay = 0.5 ,
210+ num_updates = None ,
211+ start_step = 5 ,
212+ dynamic_decay = True ,
183213 )
184214 config = tf .keras .optimizers .serialize (optimizer )
185215 new_optimizer = tf .keras .optimizers .deserialize (config )
@@ -215,9 +245,18 @@ def test_dynamic_decay():
215245 grads0 = tf .constant ([0.1 , 0.1 ])
216246 grads_and_vars = [(grads0 , var0 )]
217247
218- opt = MovingAverage (
219- tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 , dynamic_decay = True
220- )
248+ if hasattr (tf .keras .optimizers , "legacy" ):
249+ opt = MovingAverage (
250+ tf .keras .optimizers .legacy .SGD (lr = 2.0 ),
251+ average_decay = 0.5 ,
252+ dynamic_decay = True ,
253+ )
254+ else :
255+ opt = MovingAverage (
256+ tf .keras .optimizers .SGD (lr = 2.0 ),
257+ average_decay = 0.5 ,
258+ dynamic_decay = True ,
259+ )
221260
222261 opt .apply_gradients (grads_and_vars )
223262 opt .apply_gradients (grads_and_vars )
@@ -235,7 +274,12 @@ def test_swap_weight_no_shadow_copy(device):
235274 var = tf .Variable ([1.0 , 2.0 ])
236275 grads = tf .constant ([0.1 , 0.1 ])
237276
238- opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
277+ if hasattr (tf .keras .optimizers , "legacy" ):
278+ opt = MovingAverage (
279+ tf .keras .optimizers .legacy .SGD (lr = 2.0 ), average_decay = 0.5
280+ )
281+ else :
282+ opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
239283
240284 @tf .function
241285 def apply_gradients ():
@@ -267,7 +311,12 @@ def test_swap_weights(device):
267311 var = tf .Variable ([1.0 , 2.0 ])
268312 grads = tf .constant ([0.1 , 0.1 ])
269313
270- opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
314+ if hasattr (tf .keras .optimizers , "legacy" ):
315+ opt = MovingAverage (
316+ tf .keras .optimizers .legacy .SGD (lr = 2.0 ), average_decay = 0.5
317+ )
318+ else :
319+ opt = MovingAverage (tf .keras .optimizers .SGD (lr = 2.0 ), average_decay = 0.5 )
271320
272321 @tf .function
273322 def apply_gradients ():
@@ -314,7 +363,9 @@ def test_no_average_slot():
314363 # They are returned when using model.variables
315364 # but it's unable to assign average slot to them.
316365 vectorize_layer = tf .keras .layers .experimental .preprocessing .TextVectorization (
317- max_tokens = max_features , output_mode = "int" , output_sequence_length = max_len
366+ max_tokens = max_features ,
367+ output_mode = "int" ,
368+ output_sequence_length = max_len ,
318369 )
319370
320371 vectorize_layer .adapt (["foo" , "bar" , "baz" ])
0 commit comments