@@ -38,23 +38,21 @@ class CohenKappa(Metric):
3838
3939 Usage:
4040
41- ```python
42- actuals = np.array([4, 4, 3, 4, 2, 4, 1, 1], dtype=np.int32)
43- preds = np.array([4, 4, 3, 4, 4, 2, 1, 1], dtype=np.int32)
44- weights = np.array([1, 1, 2, 5, 10, 2, 3, 3], dtype=np.int32)
45-
46- m = tfa.metrics.CohenKappa(num_classes=5)
47- m.update_state(actuals, preds)
48- print('Final result: ', m.result().numpy()) # Result: 0.61904764
49-
50- # To use this with weights, sample_weight argument can be used.
51- m = tfa.metrics.CohenKappa(num_classes=5)
52- m.update_state(actuals, preds, sample_weight=weights)
53- print('Final result: ', m.result().numpy()) # Result: 0.37209308
54- ```
41+ >>> actuals = np.array([4, 4, 3, 4, 2, 4, 1, 1], dtype=np.int32)
42+ >>> preds = np.array([4, 4, 3, 4, 4, 2, 1, 1], dtype=np.int32)
43+ >>> weights = np.array([1, 1, 2, 5, 10, 2, 3, 3], dtype=np.int32)
44+ >>> m = tfa.metrics.CohenKappa(num_classes=5)
45+ >>> m_update = m.update_state(actuals, preds)
46+ >>> m.result()
47+ <tf.Tensor: id=203, shape=(), dtype=float32, numpy=0.61904764>
48+
49+ >>> m = tfa.metrics.CohenKappa(num_classes=5)
50+ >>> m_update = m.update_state(actuals, preds, sample_weight=weights)
51+ >>> m.result()
52+ <tf.Tensor: id=406, shape=(), dtype=float32, numpy=0.37209308>
5553
5654 Usage with tf.keras API:
57-
55+
5856 ```python
5957 model = tf.keras.models.Model(inputs, outputs)
6058 model.add_metric(tfa.metrics.CohenKappa(num_classes=5)(outputs))
0 commit comments