diff --git a/.DS_Store b/.DS_Store
new file mode 100644
index 000000000..feca86135
Binary files /dev/null and b/.DS_Store differ
diff --git a/pyproject.toml b/pyproject.toml
index 8fb3ab743..6244b89bc 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -35,7 +35,6 @@ dependencies = [
     "watchdog>=6.0.0,<7.0.0",
     "opentelemetry-api>=1.30.0,<2.0.0",
     "opentelemetry-sdk>=1.30.0,<2.0.0",
-    "opentelemetry-instrumentation-threading>=0.51b0,<1.00b0",
 ]
 
 [project.urls]
@@ -83,12 +82,8 @@ openai = [
 otel = [
     "opentelemetry-exporter-otlp-proto-http>=1.30.0,<2.0.0",
 ]
-writer = [
-    "writer-sdk>=2.2.0,<3.0.0"
-]
-
 a2a = [
-    "a2a-sdk[sql]>=0.2.11",
+    "a2a-sdk>=0.2.6",
     "uvicorn>=0.34.2",
     "httpx>=0.28.1",
     "fastapi>=0.115.12",
@@ -100,7 +95,7 @@ a2a = [
 source = "vcs"
 
 [tool.hatch.envs.hatch-static-analysis]
-features = ["anthropic", "litellm", "llamaapi", "ollama", "openai", "otel", "mistral", "writer"]
+features = ["anthropic", "litellm", "llamaapi", "ollama", "openai", "otel","mistral"]
 dependencies = [
   "mypy>=1.15.0,<2.0.0",
   "ruff>=0.11.6,<0.12.0",
@@ -124,7 +119,7 @@ lint-fix = [
 ]
 
 [tool.hatch.envs.hatch-test]
-features = ["anthropic", "litellm", "llamaapi", "ollama", "openai", "otel", "mistral", "writer"]
+features = ["anthropic", "litellm", "llamaapi", "ollama", "openai", "otel","mistral"]
 extra-dependencies = [
     "moto>=5.1.0,<6.0.0",
     "pytest>=8.0.0,<9.0.0",
@@ -140,7 +135,7 @@ extra-args = [
 
 [tool.hatch.envs.dev]
 dev-mode = true
-features = ["dev", "docs", "anthropic", "litellm", "llamaapi", "ollama", "otel", "mistral", "writer"]
+features = ["dev", "docs", "anthropic", "litellm", "llamaapi", "ollama", "otel","mistral"]
 
 [tool.hatch.envs.a2a]
 dev-mode = true
@@ -148,10 +143,10 @@ features = ["dev", "docs", "anthropic", "litellm", "llamaapi", "ollama", "a2a"]
 
 [tool.hatch.envs.a2a.scripts]
 run = [
-    "pytest{env:HATCH_TEST_ARGS:} tests/strands/multiagent/a2a {args}"
+    "pytest{env:HATCH_TEST_ARGS:} tests/multiagent/a2a {args}"
 ]
 run-cov = [
-    "pytest{env:HATCH_TEST_ARGS:} tests/strands/multiagent/a2a --cov --cov-config=pyproject.toml {args}"
+    "pytest{env:HATCH_TEST_ARGS:} tests/multiagent/a2a --cov --cov-config=pyproject.toml {args}"
 ]
 lint-check = [
     "ruff check",
@@ -164,11 +159,11 @@ python = ["3.13", "3.12", "3.11", "3.10"]
 [tool.hatch.envs.hatch-test.scripts]
 run = [
     # excluding due to A2A and OTEL http exporter dependency conflict
-    "pytest{env:HATCH_TEST_ARGS:} {args} --ignore=tests/strands/multiagent/a2a"
+    "pytest{env:HATCH_TEST_ARGS:} {args} --ignore=tests/multiagent/a2a"
 ]
 run-cov = [
     # excluding due to A2A and OTEL http exporter dependency conflict
-    "pytest{env:HATCH_TEST_ARGS:} --cov --cov-config=pyproject.toml {args} --ignore=tests/strands/multiagent/a2a"
+    "pytest{env:HATCH_TEST_ARGS:} --cov --cov-config=pyproject.toml {args} --ignore=tests/multiagent/a2a"
 ]
 
 cov-combine = []
@@ -195,7 +190,7 @@ test = [
     "hatch test --cover --cov-report html --cov-report xml {args}"
 ]
 test-integ = [
-    "hatch test tests_integ {args}"
+    "hatch test tests-integ {args}"
 ]
 prepare = [
     "hatch fmt --linter",
@@ -230,7 +225,7 @@ ignore_missing_imports = true
 
 [tool.ruff]
 line-length = 120
-include = ["examples/**/*.py", "src/**/*.py", "tests/**/*.py", "tests_integ/**/*.py"]
+include = ["examples/**/*.py", "src/**/*.py", "tests/**/*.py", "tests-integ/**/*.py"]
 
 [tool.ruff.lint]
 select = [
@@ -290,4 +285,4 @@ style = [
     ["instruction", ""],
     ["text", ""],
     ["disabled", "fg:#858585 italic"]
-]
+]
\ No newline at end of file
diff --git a/src/.DS_Store b/src/.DS_Store
new file mode 100644
index 000000000..b1a31ea5d
Binary files /dev/null and b/src/.DS_Store differ
diff --git a/src/strands/agent/agent.py b/src/strands/agent/agent.py
index cbe36d2f9..cc11be043 100644
--- a/src/strands/agent/agent.py
+++ b/src/strands/agent/agent.py
@@ -12,6 +12,7 @@
 import asyncio
 import json
 import logging
+import os
 import random
 from concurrent.futures import ThreadPoolExecutor
 from typing import Any, AsyncGenerator, AsyncIterator, Callable, Mapping, Optional, Type, TypeVar, Union, cast
@@ -30,7 +31,7 @@
 from ..types.content import ContentBlock, Message, Messages
 from ..types.exceptions import ContextWindowOverflowException
 from ..types.models import Model
-from ..types.tools import ToolResult, ToolUse
+from ..types.tools import ToolConfig, ToolResult, ToolUse
 from ..types.traces import AttributeValue
 from .agent_result import AgentResult
 from .conversation_manager import (
@@ -127,18 +128,14 @@ def caller(
                     "input": kwargs.copy(),
                 }
 
-                async def acall() -> ToolResult:
-                    async for event in run_tool(self._agent, tool_use, kwargs):
-                        _ = event
+                # Execute the tool
+                events = run_tool(agent=self._agent, tool=tool_use, kwargs=kwargs)
 
-                    return cast(ToolResult, event)
-
-                def tcall() -> ToolResult:
-                    return asyncio.run(acall())
-
-                with ThreadPoolExecutor() as executor:
-                    future = executor.submit(tcall)
-                    tool_result = future.result()
+                try:
+                    while True:
+                        next(events)
+                except StopIteration as stop:
+                    tool_result = cast(ToolResult, stop.value)
 
                 if record_direct_tool_call is not None:
                     should_record_direct_tool_call = record_direct_tool_call
@@ -189,6 +186,7 @@ def __init__(
             Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
         ] = _DEFAULT_CALLBACK_HANDLER,
         conversation_manager: Optional[ConversationManager] = None,
+        max_parallel_tools: int = os.cpu_count() or 1,
         record_direct_tool_call: bool = True,
         load_tools_from_directory: bool = True,
         trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
@@ -221,6 +219,8 @@ def __init__(
                 If explicitly set to None, null_callback_handler is used.
             conversation_manager: Manager for conversation history and context window.
                 Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
+            max_parallel_tools: Maximum number of tools to run in parallel when the model returns multiple tool calls.
+                Defaults to os.cpu_count() or 1.
             record_direct_tool_call: Whether to record direct tool calls in message history.
                 Defaults to True.
             load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
@@ -232,6 +232,9 @@ def __init__(
                 Defaults to None.
             state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
                 Defaults to an empty AgentState object.
+
+        Raises:
+            ValueError: If max_parallel_tools is less than 1.
         """
         self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
         self.messages = messages if messages is not None else []
@@ -260,6 +263,14 @@ def __init__(
                 ):
                     self.trace_attributes[k] = v
 
+        # If max_parallel_tools is 1, we execute tools sequentially
+        self.thread_pool = None
+        self.thread_pool_wrapper = None
+        if max_parallel_tools > 1:
+            self.thread_pool = ThreadPoolExecutor(max_workers=max_parallel_tools)
+        elif max_parallel_tools < 1:
+            raise ValueError("max_parallel_tools must be greater than 0")
+
         self.record_direct_tool_call = record_direct_tool_call
         self.load_tools_from_directory = load_tools_from_directory
 
@@ -324,14 +335,32 @@ def tool_names(self) -> list[str]:
         all_tools = self.tool_registry.get_all_tools_config()
         return list(all_tools.keys())
 
-    def __call__(self, prompt: Union[str, list[ContentBlock]], **kwargs: Any) -> AgentResult:
+    @property
+    def tool_config(self) -> ToolConfig:
+        """Get the tool configuration for this agent.
+
+        Returns:
+            The complete tool configuration.
+        """
+        return self.tool_registry.initialize_tool_config()
+
+    def __del__(self) -> None:
+        """Clean up resources when Agent is garbage collected.
+
+        Ensures proper shutdown of the thread pool executor if one exists.
+        """
+        if self.thread_pool:
+            self.thread_pool.shutdown(wait=False)
+            logger.debug("thread pool executor shutdown complete")
+
+    def __call__(self, prompt: str, **kwargs: Any) -> AgentResult:
         """Process a natural language prompt through the agent's event loop.
 
         This method implements the conversational interface (e.g., `agent("hello!")`). It adds the user's prompt to
         the conversation history, processes it through the model, executes any tool calls, and returns the final result.
 
         Args:
-            prompt: User input as text or list of ContentBlock objects for multi-modal content.
+            prompt: The natural language prompt from the user.
             **kwargs: Additional parameters to pass through the event loop.
 
         Returns:
@@ -350,14 +379,14 @@ def execute() -> AgentResult:
             future = executor.submit(execute)
             return future.result()
 
-    async def invoke_async(self, prompt: Union[str, list[ContentBlock]], **kwargs: Any) -> AgentResult:
+    async def invoke_async(self, prompt: str, **kwargs: Any) -> AgentResult:
         """Process a natural language prompt through the agent's event loop.
 
         This method implements the conversational interface (e.g., `agent("hello!")`). It adds the user's prompt to
         the conversation history, processes it through the model, executes any tool calls, and returns the final result.
 
         Args:
-            prompt: User input as text or list of ContentBlock objects for multi-modal content.
+            prompt: The natural language prompt from the user.
             **kwargs: Additional parameters to pass through the event loop.
 
         Returns:
@@ -436,7 +465,7 @@ async def structured_output_async(self, output_model: Type[T], prompt: Optional[
         finally:
             self._hooks.invoke_callbacks(EndRequestEvent(agent=self))
 
-    async def stream_async(self, prompt: Union[str, list[ContentBlock]], **kwargs: Any) -> AsyncIterator[Any]:
+    async def stream_async(self, prompt: str, **kwargs: Any) -> AsyncIterator[Any]:
         """Process a natural language prompt and yield events as an async iterator.
 
         This method provides an asynchronous interface for streaming agent events, allowing
@@ -445,7 +474,7 @@ async def stream_async(self, prompt: Union[str, list[ContentBlock]], **kwargs: A
         async environments.
 
         Args:
-            prompt: User input as text or list of ContentBlock objects for multi-modal content.
+            prompt: The natural language prompt from the user.
             **kwargs: Additional parameters to pass to the event loop.
 
         Returns:
@@ -468,13 +497,10 @@ async def stream_async(self, prompt: Union[str, list[ContentBlock]], **kwargs: A
         """
         callback_handler = kwargs.get("callback_handler", self.callback_handler)
 
-        content: list[ContentBlock] = [{"text": prompt}] if isinstance(prompt, str) else prompt
-        message: Message = {"role": "user", "content": content}
-
-        self._start_agent_trace_span(message)
+        self._start_agent_trace_span(prompt)
 
         try:
-            events = self._run_loop(message, kwargs)
+            events = self._run_loop(prompt, kwargs)
             async for event in events:
                 if "callback" in event:
                     callback_handler(**event["callback"])
@@ -490,22 +516,18 @@ async def stream_async(self, prompt: Union[str, list[ContentBlock]], **kwargs: A
             self._end_agent_trace_span(error=e)
             raise
 
-    async def _run_loop(self, message: Message, kwargs: dict[str, Any]) -> AsyncGenerator[dict[str, Any], None]:
-        """Execute the agent's event loop with the given message and parameters.
-
-        Args:
-            message: The user message to add to the conversation.
-            kwargs: Additional parameters to pass to the event loop.
-
-        Yields:
-            Events from the event loop cycle.
-        """
+    async def _run_loop(self, prompt: str, kwargs: dict[str, Any]) -> AsyncGenerator[dict[str, Any], None]:
+        """Execute the agent's event loop with the given prompt and parameters."""
         self._hooks.invoke_callbacks(StartRequestEvent(agent=self))
 
         try:
+            # Extract key parameters
             yield {"callback": {"init_event_loop": True, **kwargs}}
 
-            self.messages.append(message)
+            # Set up the user message with optional knowledge base retrieval
+            message_content: list[ContentBlock] = [{"text": prompt}]
+            new_message: Message = {"role": "user", "content": message_content}
+            self.messages.append(new_message)
 
             # Execute the event loop cycle with retry logic for context limits
             events = self._execute_event_loop_cycle(kwargs)
@@ -600,16 +622,16 @@ def _record_tool_execution(
         messages.append(tool_result_msg)
         messages.append(assistant_msg)
 
-    def _start_agent_trace_span(self, message: Message) -> None:
+    def _start_agent_trace_span(self, prompt: str) -> None:
         """Starts a trace span for the agent.
 
         Args:
-            message: The user message.
+            prompt: The natural language prompt from the user.
         """
         model_id = self.model.config.get("model_id") if hasattr(self.model, "config") else None
 
         self.trace_span = self.tracer.start_agent_span(
-            message=message,
+            prompt=prompt,
             agent_name=self.name,
             model_id=model_id,
             tools=self.tool_names,
diff --git a/src/strands/event_loop/event_loop.py b/src/strands/event_loop/event_loop.py
index 0c7cb4124..effb32e54 100644
--- a/src/strands/event_loop/event_loop.py
+++ b/src/strands/event_loop/event_loop.py
@@ -11,17 +11,15 @@
 import logging
 import time
 import uuid
-from typing import TYPE_CHECKING, Any, AsyncGenerator, cast
+from typing import TYPE_CHECKING, Any, AsyncGenerator
 
-from ..experimental.hooks import AfterToolInvocationEvent, BeforeToolInvocationEvent
-from ..experimental.hooks.registry import get_registry
 from ..telemetry.metrics import Trace
 from ..telemetry.tracer import get_tracer
 from ..tools.executor import run_tools, validate_and_prepare_tools
 from ..types.content import Message
 from ..types.exceptions import ContextWindowOverflowException, EventLoopException, ModelThrottledException
 from ..types.streaming import Metrics, StopReason
-from ..types.tools import ToolChoice, ToolChoiceAuto, ToolConfig, ToolGenerator, ToolResult, ToolUse
+from ..types.tools import ToolGenerator, ToolResult, ToolUse
 from .message_processor import clean_orphaned_empty_tool_uses
 from .streaming import stream_messages
 
@@ -58,7 +56,7 @@ async def event_loop_cycle(agent: "Agent", kwargs: dict[str, Any]) -> AsyncGener
             - event_loop_cycle_span: Current tracing Span for this cycle
 
     Yields:
-        Model and tool stream events. The last event is a tuple containing:
+        Model and tool invocation events. The last event is a tuple containing:
 
             - StopReason: Reason the model stopped generating (e.g., "tool_use")
             - Message: The generated message from the model
@@ -112,12 +110,10 @@ async def event_loop_cycle(agent: "Agent", kwargs: dict[str, Any]) -> AsyncGener
             model_id=model_id,
         )
 
-        tool_specs = agent.tool_registry.get_all_tool_specs()
-
         try:
             # TODO: To maintain backwards compatibility, we need to combine the stream event with kwargs before yielding
             #       to the callback handler. This will be revisited when migrating to strongly typed events.
-            async for event in stream_messages(agent.model, agent.system_prompt, agent.messages, tool_specs):
+            async for event in stream_messages(agent.model, agent.system_prompt, agent.messages, agent.tool_config):
                 if "callback" in event:
                     yield {"callback": {**event["callback"], **(kwargs if "delta" in event["callback"] else {})}}
 
@@ -174,6 +170,12 @@ async def event_loop_cycle(agent: "Agent", kwargs: dict[str, Any]) -> AsyncGener
 
         # If the model is requesting to use tools
         if stop_reason == "tool_use":
+            if agent.tool_config is None:
+                raise EventLoopException(
+                    Exception("Model requested tool use but no tool config provided"),
+                    kwargs["request_state"],
+                )
+
             # Handle tool execution
             events = _handle_tool_execution(
                 stop_reason,
@@ -252,119 +254,64 @@ async def recurse_event_loop(agent: "Agent", kwargs: dict[str, Any]) -> AsyncGen
     recursive_trace.end()
 
 
-async def run_tool(agent: "Agent", tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerator:
+def run_tool(agent: "Agent", kwargs: dict[str, Any], tool: ToolUse) -> ToolGenerator:
     """Process a tool invocation.
 
-    Looks up the tool in the registry and streams it with the provided parameters.
+    Looks up the tool in the registry and invokes it with the provided parameters.
 
     Args:
         agent: The agent for which the tool is being executed.
-        tool_use: The tool object to process, containing name and parameters.
+        tool: The tool object to process, containing name and parameters.
         kwargs: Additional keyword arguments passed to the tool.
 
     Yields:
-        Tool events with the last being the tool result.
+        Events of the tool invocation.
+
+    Returns:
+        The final tool result or an error response if the tool fails or is not found.
     """
-    logger.debug("tool_use=<%s> | streaming", tool_use)
-    tool_name = tool_use["name"]
+    logger.debug("tool=<%s> | invoking", tool)
+    tool_use_id = tool["toolUseId"]
+    tool_name = tool["name"]
 
     # Get the tool info
     tool_info = agent.tool_registry.dynamic_tools.get(tool_name)
     tool_func = tool_info if tool_info is not None else agent.tool_registry.registry.get(tool_name)
 
-    # Add standard arguments to kwargs for Python tools
-    kwargs.update(
-        {
-            "model": agent.model,
-            "system_prompt": agent.system_prompt,
-            "messages": agent.messages,
-            "tool_config": ToolConfig(  # for backwards compatability
-                tools=[{"toolSpec": tool_spec} for tool_spec in agent.tool_registry.get_all_tool_specs()],
-                toolChoice=cast(ToolChoice, {"auto": ToolChoiceAuto()}),
-            ),
-        }
-    )
-
-    before_event = get_registry(agent).invoke_callbacks(
-        BeforeToolInvocationEvent(
-            agent=agent,
-            selected_tool=tool_func,
-            tool_use=tool_use,
-            kwargs=kwargs,
-        )
-    )
-
     try:
-        selected_tool = before_event.selected_tool
-        tool_use = before_event.tool_use
-
         # Check if tool exists
-        if not selected_tool:
-            if tool_func == selected_tool:
-                logger.error(
-                    "tool_name=<%s>, available_tools=<%s> | tool not found in registry",
-                    tool_name,
-                    list(agent.tool_registry.registry.keys()),
-                )
-            else:
-                logger.debug(
-                    "tool_name=<%s>, tool_use_id=<%s> | a hook resulted in a non-existing tool call",
-                    tool_name,
-                    str(tool_use.get("toolUseId")),
-                )
-
-            result: ToolResult = {
-                "toolUseId": str(tool_use.get("toolUseId")),
+        if not tool_func:
+            logger.error(
+                "tool_name=<%s>, available_tools=<%s> | tool not found in registry",
+                tool_name,
+                list(agent.tool_registry.registry.keys()),
+            )
+            return {
+                "toolUseId": tool_use_id,
                 "status": "error",
                 "content": [{"text": f"Unknown tool: {tool_name}"}],
             }
-            # for every Before event call, we need to have an AfterEvent call
-            after_event = get_registry(agent).invoke_callbacks(
-                AfterToolInvocationEvent(
-                    agent=agent,
-                    selected_tool=selected_tool,
-                    tool_use=tool_use,
-                    kwargs=kwargs,
-                    result=result,
-                )
-            )
-            yield after_event.result
-            return
-
-        async for event in selected_tool.stream(tool_use, kwargs):
-            yield event
-
-        result = event
-
-        after_event = get_registry(agent).invoke_callbacks(
-            AfterToolInvocationEvent(
-                agent=agent,
-                selected_tool=selected_tool,
-                tool_use=tool_use,
-                kwargs=kwargs,
-                result=result,
-            )
+        # Add standard arguments to kwargs for Python tools
+        kwargs.update(
+            {
+                "model": agent.model,
+                "system_prompt": agent.system_prompt,
+                "messages": agent.messages,
+                "tool_config": agent.tool_config,
+            }
         )
-        yield after_event.result
+
+        result = tool_func.invoke(tool, **kwargs)
+        yield {"result": result}  # Placeholder until tool_func becomes a generator from which we can yield from
+        return result
 
     except Exception as e:
         logger.exception("tool_name=<%s> | failed to process tool", tool_name)
-        error_result: ToolResult = {
-            "toolUseId": str(tool_use.get("toolUseId")),
+        return {
+            "toolUseId": tool_use_id,
             "status": "error",
             "content": [{"text": f"Error: {str(e)}"}],
         }
-        after_event = get_registry(agent).invoke_callbacks(
-            AfterToolInvocationEvent(
-                agent=agent,
-                selected_tool=selected_tool,
-                tool_use=tool_use,
-                kwargs=kwargs,
-                result=error_result,
-                exception=e,
-            )
-        )
-        yield after_event.result
 
 
 async def _handle_tool_execution(
@@ -394,8 +341,8 @@ async def _handle_tool_execution(
         kwargs: Additional keyword arguments, including request state.
 
     Yields:
-        Tool stream events along with events yielded from a recursive call to the event loop. The last event is a tuple
-        containing:
+        Tool invocation events along with events yielded from a recursive call to the event loop. The last event is a
+        tuple containing:
             - The stop reason,
             - The updated message,
             - The updated event loop metrics,
@@ -408,7 +355,7 @@ async def _handle_tool_execution(
         return
 
     def tool_handler(tool_use: ToolUse) -> ToolGenerator:
-        return run_tool(agent, tool_use, kwargs)
+        return run_tool(agent=agent, kwargs=kwargs, tool=tool_use)
 
     tool_events = run_tools(
         handler=tool_handler,
@@ -418,8 +365,9 @@ def tool_handler(tool_use: ToolUse) -> ToolGenerator:
         tool_results=tool_results,
         cycle_trace=cycle_trace,
         parent_span=cycle_span,
+        thread_pool=agent.thread_pool,
     )
-    async for tool_event in tool_events:
+    for tool_event in tool_events:
         yield tool_event
 
     # Store parent cycle ID for the next cycle
diff --git a/src/strands/event_loop/streaming.py b/src/strands/event_loop/streaming.py
index 777c3a064..6ecc3e270 100644
--- a/src/strands/event_loop/streaming.py
+++ b/src/strands/event_loop/streaming.py
@@ -19,7 +19,7 @@
     StreamEvent,
     Usage,
 )
-from ..types.tools import ToolSpec, ToolUse
+from ..types.tools import ToolConfig, ToolUse
 
 logger = logging.getLogger(__name__)
 
@@ -304,7 +304,7 @@ async def stream_messages(
     model: Model,
     system_prompt: Optional[str],
     messages: Messages,
-    tool_specs: list[ToolSpec],
+    tool_config: Optional[ToolConfig],
 ) -> AsyncGenerator[dict[str, Any], None]:
     """Streams messages to the model and processes the response.
 
@@ -312,7 +312,7 @@ async def stream_messages(
         model: Model provider.
         system_prompt: The system prompt to send.
         messages: List of messages to send.
-        tool_specs: The list of tool specs.
+        tool_config: Configuration for the tools to use.
 
     Returns:
         The reason for stopping, the final message, and the usage metrics
@@ -320,7 +320,8 @@ async def stream_messages(
     logger.debug("model=<%s> | streaming messages", model)
 
     messages = remove_blank_messages_content_text(messages)
+    tool_specs = [tool["toolSpec"] for tool in tool_config.get("tools", [])] or None if tool_config else None
 
-    chunks = model.converse(messages, tool_specs if tool_specs else None, system_prompt)
+    chunks = model.converse(messages, tool_specs, system_prompt)
     async for event in process_stream(chunks, messages):
         yield event
diff --git a/src/strands/experimental/hooks/__init__.py b/src/strands/experimental/hooks/__init__.py
index 61bd6ac3e..3ec805137 100644
--- a/src/strands/experimental/hooks/__init__.py
+++ b/src/strands/experimental/hooks/__init__.py
@@ -29,21 +29,13 @@ def log_end(self, event: EndRequestEvent) -> None:
 type-safe system that supports multiple subscribers per event type.
 """
 
-from .events import (
-    AfterToolInvocationEvent,
-    AgentInitializedEvent,
-    BeforeToolInvocationEvent,
-    EndRequestEvent,
-    StartRequestEvent,
-)
+from .events import AgentInitializedEvent, EndRequestEvent, StartRequestEvent
 from .registry import HookCallback, HookEvent, HookProvider, HookRegistry
 
 __all__ = [
     "AgentInitializedEvent",
     "StartRequestEvent",
     "EndRequestEvent",
-    "BeforeToolInvocationEvent",
-    "AfterToolInvocationEvent",
     "HookEvent",
     "HookProvider",
     "HookCallback",
diff --git a/src/strands/experimental/hooks/events.py b/src/strands/experimental/hooks/events.py
index 559f1051d..c42b82d54 100644
--- a/src/strands/experimental/hooks/events.py
+++ b/src/strands/experimental/hooks/events.py
@@ -4,9 +4,7 @@
 """
 
 from dataclasses import dataclass
-from typing import Any, Optional
 
-from ...types.tools import AgentTool, ToolResult, ToolUse
 from .registry import HookEvent
 
 
@@ -58,63 +56,9 @@ class EndRequestEvent(HookEvent):
 
     @property
     def should_reverse_callbacks(self) -> bool:
-        """True to invoke callbacks in reverse order."""
-        return True
-
-
-@dataclass
-class BeforeToolInvocationEvent(HookEvent):
-    """Event triggered before a tool is invoked.
-
-    This event is fired just before the agent executes a tool, allowing hook
-    providers to inspect, modify, or replace the tool that will be executed.
-    The selected_tool can be modified by hook callbacks to change which tool
-    gets executed.
-
-    Attributes:
-        selected_tool: The tool that will be invoked. Can be modified by hooks
-            to change which tool gets executed. This may be None if tool lookup failed.
-        tool_use: The tool parameters that will be passed to selected_tool.
-        kwargs: Keyword arguments that will be passed to the tool.
-    """
-
-    selected_tool: Optional[AgentTool]
-    tool_use: ToolUse
-    kwargs: dict[str, Any]
-
-    def _can_write(self, name: str) -> bool:
-        return name in ["selected_tool", "tool_use"]
-
-
-@dataclass
-class AfterToolInvocationEvent(HookEvent):
-    """Event triggered after a tool invocation completes.
+        """Return True to invoke callbacks in reverse order for proper cleanup.
 
-    This event is fired after the agent has finished executing a tool,
-    regardless of whether the execution was successful or resulted in an error.
-    Hook providers can use this event for cleanup, logging, or post-processing.
-
-    Note: This event uses reverse callback ordering, meaning callbacks registered
-    later will be invoked first during cleanup.
-
-    Attributes:
-        selected_tool: The tool that was invoked. It may be None if tool lookup failed.
-        tool_use: The tool parameters that were passed to the tool invoked.
-        kwargs: Keyword arguments that were passed to the tool
-        result: The result of the tool invocation. Either a ToolResult on success
-            or an Exception if the tool execution failed.
-    """
-
-    selected_tool: Optional[AgentTool]
-    tool_use: ToolUse
-    kwargs: dict[str, Any]
-    result: ToolResult
-    exception: Optional[Exception] = None
-
-    def _can_write(self, name: str) -> bool:
-        return name == "result"
-
-    @property
-    def should_reverse_callbacks(self) -> bool:
-        """True to invoke callbacks in reverse order."""
+        Returns:
+            True, indicating callbacks should be invoked in reverse order.
+        """
         return True
diff --git a/src/strands/experimental/hooks/registry.py b/src/strands/experimental/hooks/registry.py
index befa6c397..4b3eceb4b 100644
--- a/src/strands/experimental/hooks/registry.py
+++ b/src/strands/experimental/hooks/registry.py
@@ -8,7 +8,7 @@
 """
 
 from dataclasses import dataclass
-from typing import TYPE_CHECKING, Any, Generator, Generic, Protocol, Type, TypeVar
+from typing import TYPE_CHECKING, Callable, Generator, Generic, Protocol, Type, TypeVar
 
 if TYPE_CHECKING:
     from ...agent import Agent
@@ -34,43 +34,9 @@ def should_reverse_callbacks(self) -> bool:
         """
         return False
 
-    def _can_write(self, name: str) -> bool:
-        """Check if the given property can be written to.
-
-        Args:
-            name: The name of the property to check.
-
-        Returns:
-            True if the property can be written to, False otherwise.
-        """
-        return False
-
-    def __post_init__(self) -> None:
-        """Disallow writes to non-approved properties."""
-        # This is needed as otherwise the class can't be initialized at all, so we trigger
-        # this after class initialization
-        super().__setattr__("_disallow_writes", True)
-
-    def __setattr__(self, name: str, value: Any) -> None:
-        """Prevent setting attributes on hook events.
-
-        Raises:
-            AttributeError: Always raised to prevent setting attributes on hook events.
-        """
-        #  Allow setting attributes:
-        #    - during init (when __dict__) doesn't exist
-        #    - if the subclass specifically said the property is writable
-        if not hasattr(self, "_disallow_writes") or self._can_write(name):
-            return super().__setattr__(name, value)
-
-        raise AttributeError(f"Property {name} is not writable")
-
 
+T = TypeVar("T", bound=Callable)
 TEvent = TypeVar("TEvent", bound=HookEvent, contravariant=True)
-"""Generic for adding callback handlers - contravariant to allow adding handlers which take in base classes."""
-
-TInvokeEvent = TypeVar("TInvokeEvent", bound=HookEvent)
-"""Generic for invoking events - non-contravariant to enable returning events."""
 
 
 class HookProvider(Protocol):
@@ -178,7 +144,7 @@ def register_hooks(self, registry: HookRegistry):
         """
         hook.register_hooks(self)
 
-    def invoke_callbacks(self, event: TInvokeEvent) -> TInvokeEvent:
+    def invoke_callbacks(self, event: TEvent) -> None:
         """Invoke all registered callbacks for the given event.
 
         This method finds all callbacks registered for the event's type and
@@ -191,9 +157,6 @@ def invoke_callbacks(self, event: TInvokeEvent) -> TInvokeEvent:
         Raises:
             Any exceptions raised by callback functions will propagate to the caller.
 
-        Returns:
-            The event dispatched to registered callbacks.
-
         Example:
             ```python
             event = StartRequestEvent(agent=my_agent)
@@ -203,8 +166,6 @@ def invoke_callbacks(self, event: TInvokeEvent) -> TInvokeEvent:
         for callback in self.get_callbacks_for(event):
             callback(event)
 
-        return event
-
     def get_callbacks_for(self, event: TEvent) -> Generator[HookCallback[TEvent], None, None]:
         """Get callbacks registered for the given event in the appropriate order.
 
@@ -232,18 +193,3 @@ def get_callbacks_for(self, event: TEvent) -> Generator[HookCallback[TEvent], No
             yield from reversed(callbacks)
         else:
             yield from callbacks
-
-
-def get_registry(agent: "Agent") -> HookRegistry:
-    """*Experimental*: Get the hooks registry for the provided agent.
-
-    This function is available while hooks are in experimental preview.
-
-    Args:
-        agent: The agent whose hook registry should be returned.
-
-    Returns:
-        The HookRegistry for the given agent.
-
-    """
-    return agent._hooks
diff --git a/src/strands/handlers/__init__.py b/src/strands/handlers/__init__.py
index fc1a56910..6a56201c7 100644
--- a/src/strands/handlers/__init__.py
+++ b/src/strands/handlers/__init__.py
@@ -2,6 +2,7 @@
 
 Examples include:
 
+- Processing tool invocations
 - Displaying events from the event stream
 """
 
diff --git a/src/strands/models/anthropic.py b/src/strands/models/anthropic.py
index be96d55e2..02c3d9089 100644
--- a/src/strands/models/anthropic.py
+++ b/src/strands/models/anthropic.py
@@ -72,7 +72,7 @@ def __init__(self, *, client_args: Optional[dict[str, Any]] = None, **model_conf
         logger.debug("config=<%s> | initializing", self.config)
 
         client_args = client_args or {}
-        self.client = anthropic.AsyncAnthropic(**client_args)
+        self.client = anthropic.Anthropic(**client_args)
 
     @override
     def update_config(self, **model_config: Unpack[AnthropicConfig]) -> None:  # type: ignore[override]
@@ -358,8 +358,8 @@ async def stream(self, request: dict[str, Any]) -> AsyncGenerator[dict[str, Any]
             ModelThrottledException: If the request is throttled by Anthropic.
         """
         try:
-            async with self.client.messages.stream(**request) as stream:
-                async for event in stream:
+            with self.client.messages.stream(**request) as stream:
+                for event in stream:
                     if event.type in AnthropicModel.EVENT_TYPES:
                         yield event.model_dump()
 
diff --git a/src/strands/models/mistral.py b/src/strands/models/mistral.py
index 521d4491e..6f8492b79 100644
--- a/src/strands/models/mistral.py
+++ b/src/strands/models/mistral.py
@@ -8,7 +8,7 @@
 import logging
 from typing import Any, AsyncGenerator, Iterable, Optional, Type, TypeVar, Union
 
-import mistralai
+from mistralai import Mistral
 from pydantic import BaseModel
 from typing_extensions import TypedDict, Unpack, override
 
@@ -94,7 +94,7 @@ def __init__(
         if api_key:
             client_args["api_key"] = api_key
 
-        self.client = mistralai.Mistral(**client_args)
+        self.client = Mistral(**client_args)
 
     @override
     def update_config(self, **model_config: Unpack[MistralConfig]) -> None:  # type: ignore
@@ -408,21 +408,21 @@ async def stream(self, request: dict[str, Any]) -> AsyncGenerator[dict[str, Any]
         try:
             if not self.config.get("stream", True):
                 # Use non-streaming API
-                response = await self.client.chat.complete_async(**request)
+                response = self.client.chat.complete(**request)
                 for event in self._handle_non_streaming_response(response):
                     yield event
                 return
 
             # Use the streaming API
-            stream_response = await self.client.chat.stream_async(**request)
+            stream_response = self.client.chat.stream(**request)
 
             yield {"chunk_type": "message_start"}
 
             content_started = False
-            tool_calls: dict[str, list[Any]] = {}
+            current_tool_calls: dict[str, dict[str, str]] = {}
             accumulated_text = ""
 
-            async for chunk in stream_response:
+            for chunk in stream_response:
                 if hasattr(chunk, "data") and hasattr(chunk.data, "choices") and chunk.data.choices:
                     choice = chunk.data.choices[0]
 
@@ -440,23 +440,24 @@ async def stream(self, request: dict[str, Any]) -> AsyncGenerator[dict[str, Any]
                         if hasattr(delta, "tool_calls") and delta.tool_calls:
                             for tool_call in delta.tool_calls:
                                 tool_id = tool_call.id
-                                tool_calls.setdefault(tool_id, []).append(tool_call)
 
-                    if hasattr(choice, "finish_reason") and choice.finish_reason:
-                        if content_started:
-                            yield {"chunk_type": "content_stop", "data_type": "text"}
-
-                        for tool_deltas in tool_calls.values():
-                            yield {"chunk_type": "content_start", "data_type": "tool", "data": tool_deltas[0]}
+                                if tool_id not in current_tool_calls:
+                                    yield {"chunk_type": "content_start", "data_type": "tool", "data": tool_call}
+                                    current_tool_calls[tool_id] = {"name": tool_call.function.name, "arguments": ""}
 
-                            for tool_delta in tool_deltas:
-                                if hasattr(tool_delta.function, "arguments"):
+                                if hasattr(tool_call.function, "arguments"):
+                                    current_tool_calls[tool_id]["arguments"] += tool_call.function.arguments
                                     yield {
                                         "chunk_type": "content_delta",
                                         "data_type": "tool",
-                                        "data": tool_delta.function.arguments,
+                                        "data": tool_call.function.arguments,
                                     }
 
+                    if hasattr(choice, "finish_reason") and choice.finish_reason:
+                        if content_started:
+                            yield {"chunk_type": "content_stop", "data_type": "text"}
+
+                        for _ in current_tool_calls:
                             yield {"chunk_type": "content_stop", "data_type": "tool"}
 
                         yield {"chunk_type": "message_stop", "data": choice.finish_reason}
@@ -498,7 +499,7 @@ async def structured_output(
         formatted_request["tool_choice"] = "any"
         formatted_request["parallel_tool_calls"] = False
 
-        response = await self.client.chat.complete_async(**formatted_request)
+        response = self.client.chat.complete(**formatted_request)
 
         if response.choices and response.choices[0].message.tool_calls:
             tool_call = response.choices[0].message.tool_calls[0]
diff --git a/src/strands/models/ollama.py b/src/strands/models/ollama.py
index ae70d2e77..707672498 100644
--- a/src/strands/models/ollama.py
+++ b/src/strands/models/ollama.py
@@ -7,7 +7,7 @@
 import logging
 from typing import Any, AsyncGenerator, Optional, Type, TypeVar, Union, cast
 
-import ollama
+from ollama import Client as OllamaClient
 from pydantic import BaseModel
 from typing_extensions import TypedDict, Unpack, override
 
@@ -74,7 +74,7 @@ def __init__(
 
         ollama_client_args = ollama_client_args if ollama_client_args is not None else {}
 
-        self.client = ollama.AsyncClient(host, **ollama_client_args)
+        self.client = OllamaClient(host, **ollama_client_args)
 
     @override
     def update_config(self, **model_config: Unpack[OllamaConfig]) -> None:  # type: ignore
@@ -296,12 +296,12 @@ async def stream(self, request: dict[str, Any]) -> AsyncGenerator[dict[str, Any]
         """
         tool_requested = False
 
-        response = await self.client.chat(**request)
+        response = self.client.chat(**request)
 
         yield {"chunk_type": "message_start"}
         yield {"chunk_type": "content_start", "data_type": "text"}
 
-        async for event in response:
+        for event in response:
             for tool_call in event.message.tool_calls or []:
                 yield {"chunk_type": "content_start", "data_type": "tool", "data": tool_call}
                 yield {"chunk_type": "content_delta", "data_type": "tool", "data": tool_call}
@@ -330,7 +330,7 @@ async def structured_output(
         formatted_request = self.format_request(messages=prompt)
         formatted_request["format"] = output_model.model_json_schema()
         formatted_request["stream"] = False
-        response = await self.client.chat(**formatted_request)
+        response = self.client.chat(**formatted_request)
 
         try:
             content = response.message.content.strip()
diff --git a/src/strands/models/writer.py b/src/strands/models/writer.py
deleted file mode 100644
index 0a5ca4a95..000000000
--- a/src/strands/models/writer.py
+++ /dev/null
@@ -1,431 +0,0 @@
-"""Writer model provider.
-
-- Docs: https://dev.writer.com/home/introduction
-"""
-
-import base64
-import json
-import logging
-import mimetypes
-from typing import Any, AsyncGenerator, Dict, List, Optional, Type, TypedDict, TypeVar, Union, cast
-
-import writerai
-from pydantic import BaseModel
-from typing_extensions import Unpack, override
-
-from ..types.content import ContentBlock, Messages
-from ..types.exceptions import ModelThrottledException
-from ..types.models import Model
-from ..types.streaming import StreamEvent
-from ..types.tools import ToolResult, ToolSpec, ToolUse
-
-logger = logging.getLogger(__name__)
-
-T = TypeVar("T", bound=BaseModel)
-
-
-class WriterModel(Model):
-    """Writer API model provider implementation."""
-
-    class WriterConfig(TypedDict, total=False):
-        """Configuration options for Writer API.
-
-        Attributes:
-            model_id: Model name to use (e.g. palmyra-x5, palmyra-x4, etc.).
-            max_tokens: Maximum number of tokens to generate.
-            stop: Default stop sequences.
-            stream_options: Additional options for streaming.
-            temperature: What sampling temperature to use.
-            top_p: Threshold for 'nucleus sampling'
-        """
-
-        model_id: str
-        max_tokens: Optional[int]
-        stop: Optional[Union[str, List[str]]]
-        stream_options: Dict[str, Any]
-        temperature: Optional[float]
-        top_p: Optional[float]
-
-    def __init__(self, client_args: Optional[dict[str, Any]] = None, **model_config: Unpack[WriterConfig]):
-        """Initialize provider instance.
-
-        Args:
-            client_args: Arguments for the Writer client (e.g., api_key, base_url, timeout, etc.).
-            **model_config: Configuration options for the Writer model.
-        """
-        self.config = WriterModel.WriterConfig(**model_config)
-
-        logger.debug("config=<%s> | initializing", self.config)
-
-        client_args = client_args or {}
-        self.client = writerai.AsyncClient(**client_args)
-
-    @override
-    def update_config(self, **model_config: Unpack[WriterConfig]) -> None:  # type: ignore[override]
-        """Update the Writer Model configuration with the provided arguments.
-
-        Args:
-            **model_config: Configuration overrides.
-        """
-        self.config.update(model_config)
-
-    @override
-    def get_config(self) -> WriterConfig:
-        """Get the Writer model configuration.
-
-        Returns:
-            The Writer model configuration.
-        """
-        return self.config
-
-    def _format_request_message_contents_vision(self, contents: list[ContentBlock]) -> list[dict[str, Any]]:
-        def _format_content_vision(content: ContentBlock) -> dict[str, Any]:
-            """Format a Writer content block for Palmyra V5 request.
-
-            - NOTE: "reasoningContent", "document" and "video" are not supported currently.
-
-            Args:
-                content: Message content.
-
-            Returns:
-                Writer formatted content block for models, which support vision content format.
-
-            Raises:
-                TypeError: If the content block type cannot be converted to a Writer-compatible format.
-            """
-            if "text" in content:
-                return {"text": content["text"], "type": "text"}
-
-            if "image" in content:
-                mime_type = mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream")
-                image_data = base64.b64encode(content["image"]["source"]["bytes"]).decode("utf-8")
-
-                return {
-                    "image_url": {
-                        "url": f"data:{mime_type};base64,{image_data}",
-                    },
-                    "type": "image_url",
-                }
-
-            raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")
-
-        return [
-            _format_content_vision(content)
-            for content in contents
-            if not any(block_type in content for block_type in ["toolResult", "toolUse"])
-        ]
-
-    def _format_request_message_contents(self, contents: list[ContentBlock]) -> str:
-        def _format_content(content: ContentBlock) -> str:
-            """Format a Writer content block for Palmyra models (except V5) request.
-
-            - NOTE: "reasoningContent", "document", "video" and "image" are not supported currently.
-
-            Args:
-                content: Message content.
-
-            Returns:
-                Writer formatted content block.
-
-            Raises:
-                TypeError: If the content block type cannot be converted to a Writer-compatible format.
-            """
-            if "text" in content:
-                return content["text"]
-
-            raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")
-
-        content_blocks = list(
-            filter(
-                lambda content: content.get("text")
-                and not any(block_type in content for block_type in ["toolResult", "toolUse"]),
-                contents,
-            )
-        )
-
-        if len(content_blocks) > 1:
-            raise ValueError(
-                f"Model with name {self.get_config().get('model_id', 'N/A')} doesn't support multiple contents"
-            )
-        elif len(content_blocks) == 1:
-            return _format_content(content_blocks[0])
-        else:
-            return ""
-
-    def _format_request_message_tool_call(self, tool_use: ToolUse) -> dict[str, Any]:
-        """Format a Writer tool call.
-
-        Args:
-            tool_use: Tool use requested by the model.
-
-        Returns:
-            Writer formatted tool call.
-        """
-        return {
-            "function": {
-                "arguments": json.dumps(tool_use["input"]),
-                "name": tool_use["name"],
-            },
-            "id": tool_use["toolUseId"],
-            "type": "function",
-        }
-
-    def _format_request_tool_message(self, tool_result: ToolResult) -> dict[str, Any]:
-        """Format a Writer tool message.
-
-        Args:
-            tool_result: Tool result collected from a tool execution.
-
-        Returns:
-            Writer formatted tool message.
-        """
-        contents = cast(
-            list[ContentBlock],
-            [
-                {"text": json.dumps(content["json"])} if "json" in content else content
-                for content in tool_result["content"]
-            ],
-        )
-
-        if self.get_config().get("model_id", "") == "palmyra-x5":
-            formatted_contents = self._format_request_message_contents_vision(contents)
-        else:
-            formatted_contents = self._format_request_message_contents(contents)  # type: ignore [assignment]
-
-        return {
-            "role": "tool",
-            "tool_call_id": tool_result["toolUseId"],
-            "content": formatted_contents,
-        }
-
-    def _format_request_messages(self, messages: Messages, system_prompt: Optional[str] = None) -> list[dict[str, Any]]:
-        """Format a Writer compatible messages array.
-
-        Args:
-            messages: List of message objects to be processed by the model.
-            system_prompt: System prompt to provide context to the model.
-
-        Returns:
-            Writer compatible messages array.
-        """
-        formatted_messages: list[dict[str, Any]]
-        formatted_messages = [{"role": "system", "content": system_prompt}] if system_prompt else []
-
-        for message in messages:
-            contents = message["content"]
-
-            # Only palmyra V5 support multiple content. Other models support only '{"content": "text_content"}'
-            if self.get_config().get("model_id", "") == "palmyra-x5":
-                formatted_contents: str | list[dict[str, Any]] = self._format_request_message_contents_vision(contents)
-            else:
-                formatted_contents = self._format_request_message_contents(contents)
-
-            formatted_tool_calls = [
-                self._format_request_message_tool_call(content["toolUse"])
-                for content in contents
-                if "toolUse" in content
-            ]
-            formatted_tool_messages = [
-                self._format_request_tool_message(content["toolResult"])
-                for content in contents
-                if "toolResult" in content
-            ]
-
-            formatted_message = {
-                "role": message["role"],
-                "content": formatted_contents if len(formatted_contents) > 0 else "",
-                **({"tool_calls": formatted_tool_calls} if formatted_tool_calls else {}),
-            }
-            formatted_messages.append(formatted_message)
-            formatted_messages.extend(formatted_tool_messages)
-
-        return [message for message in formatted_messages if message["content"] or "tool_calls" in message]
-
-    @override
-    def format_request(
-        self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
-    ) -> Any:
-        """Format a streaming request to the underlying model.
-
-        Args:
-            messages: List of message objects to be processed by the model.
-            tool_specs: List of tool specifications to make available to the model.
-            system_prompt: System prompt to provide context to the model.
-
-        Returns:
-            The formatted request.
-        """
-        request = {
-            **{k: v for k, v in self.config.items()},
-            "messages": self._format_request_messages(messages, system_prompt),
-            "stream": True,
-        }
-        try:
-            request["model"] = request.pop(
-                "model_id"
-            )  # To be consisted with other models WriterConfig use 'model_id' arg, but Writer API wait for 'model' arg
-        except KeyError as e:
-            raise KeyError("Please specify a model ID. Use 'model_id' keyword argument.") from e
-
-        # Writer don't support empty tools attribute
-        if tool_specs:
-            request["tools"] = [
-                {
-                    "type": "function",
-                    "function": {
-                        "name": tool_spec["name"],
-                        "description": tool_spec["description"],
-                        "parameters": tool_spec["inputSchema"]["json"],
-                    },
-                }
-                for tool_spec in tool_specs
-            ]
-
-        return request
-
-    @override
-    def format_chunk(self, event: Any) -> StreamEvent:
-        """Format the model response events into standardized message chunks.
-
-        Args:
-            event: A response event from the model.
-
-        Returns:
-            The formatted chunk.
-        """
-        match event.get("chunk_type", ""):
-            case "message_start":
-                return {"messageStart": {"role": "assistant"}}
-
-            case "content_block_start":
-                if event["data_type"] == "text":
-                    return {"contentBlockStart": {"start": {}}}
-
-                return {
-                    "contentBlockStart": {
-                        "start": {
-                            "toolUse": {
-                                "name": event["data"].function.name,
-                                "toolUseId": event["data"].id,
-                            }
-                        }
-                    }
-                }
-
-            case "content_block_delta":
-                if event["data_type"] == "text":
-                    return {"contentBlockDelta": {"delta": {"text": event["data"]}}}
-
-                return {"contentBlockDelta": {"delta": {"toolUse": {"input": event["data"].function.arguments}}}}
-
-            case "content_block_stop":
-                return {"contentBlockStop": {}}
-
-            case "message_stop":
-                match event["data"]:
-                    case "tool_calls":
-                        return {"messageStop": {"stopReason": "tool_use"}}
-                    case "length":
-                        return {"messageStop": {"stopReason": "max_tokens"}}
-                    case _:
-                        return {"messageStop": {"stopReason": "end_turn"}}
-
-            case "metadata":
-                return {
-                    "metadata": {
-                        "usage": {
-                            "inputTokens": event["data"].prompt_tokens if event["data"] else 0,
-                            "outputTokens": event["data"].completion_tokens if event["data"] else 0,
-                            "totalTokens": event["data"].total_tokens if event["data"] else 0,
-                        },  # If 'stream_options' param is unset, empty metadata will be provided.
-                        # To avoid errors replacing expected fields with default zero value
-                        "metrics": {
-                            "latencyMs": 0,  # All palmyra models don't provide 'latency' metadata
-                        },
-                    },
-                }
-
-            case _:
-                raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")
-
-    @override
-    async def stream(self, request: Any) -> AsyncGenerator[Any, None]:
-        """Send the request to the model and get a streaming response.
-
-        Args:
-            request: The formatted request to send to the model.
-
-        Returns:
-            The model's response.
-
-        Raises:
-            ModelThrottledException: When the model service is throttling requests from the client.
-        """
-        try:
-            response = await self.client.chat.chat(**request)
-        except writerai.RateLimitError as e:
-            raise ModelThrottledException(str(e)) from e
-
-        yield {"chunk_type": "message_start"}
-        yield {"chunk_type": "content_block_start", "data_type": "text"}
-
-        tool_calls: dict[int, list[Any]] = {}
-
-        async for chunk in response:
-            if not getattr(chunk, "choices", None):
-                continue
-            choice = chunk.choices[0]
-
-            if choice.delta.content:
-                yield {"chunk_type": "content_block_delta", "data_type": "text", "data": choice.delta.content}
-
-            for tool_call in choice.delta.tool_calls or []:
-                tool_calls.setdefault(tool_call.index, []).append(tool_call)
-
-            if choice.finish_reason:
-                break
-
-        yield {"chunk_type": "content_block_stop", "data_type": "text"}
-
-        for tool_deltas in tool_calls.values():
-            tool_start, tool_deltas = tool_deltas[0], tool_deltas[1:]
-            yield {"chunk_type": "content_block_start", "data_type": "tool", "data": tool_start}
-
-            for tool_delta in tool_deltas:
-                yield {"chunk_type": "content_block_delta", "data_type": "tool", "data": tool_delta}
-
-            yield {"chunk_type": "content_block_stop", "data_type": "tool"}
-
-        yield {"chunk_type": "message_stop", "data": choice.finish_reason}
-
-        # Iterating until the end to fetch metadata chunk
-        async for chunk in response:
-            _ = chunk
-
-        yield {"chunk_type": "metadata", "data": chunk.usage}
-
-    @override
-    async def structured_output(
-        self, output_model: Type[T], prompt: Messages
-    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
-        """Get structured output from the model.
-
-        Args:
-            output_model(Type[BaseModel]): The output model to use for the agent.
-            prompt(Messages): The prompt messages to use for the agent.
-        """
-        formatted_request = self.format_request(messages=prompt)
-        formatted_request["response_format"] = {
-            "type": "json_schema",
-            "json_schema": {"schema": output_model.model_json_schema()},
-        }
-        formatted_request["stream"] = False
-        formatted_request.pop("stream_options", None)
-
-        response = await self.client.chat.chat(**formatted_request)
-
-        try:
-            content = response.choices[0].message.content.strip()
-            yield {"output": output_model.model_validate_json(content)}
-        except Exception as e:
-            raise ValueError(f"Failed to parse or load content into model: {e}") from e
diff --git a/src/strands/multiagent/a2a/executor.py b/src/strands/multiagent/a2a/executor.py
index 61d767858..b7a7af091 100644
--- a/src/strands/multiagent/a2a/executor.py
+++ b/src/strands/multiagent/a2a/executor.py
@@ -2,40 +2,31 @@
 
 This module provides the StrandsA2AExecutor class, which adapts a Strands Agent
 to be used as an executor in the A2A protocol. It handles the execution of agent
-requests and the conversion of Strands Agent streamed responses to A2A events.
-
-The A2A AgentExecutor ensures clients recieve responses for synchronous and
-streamed requests to the A2AServer.
+requests and the conversion of Strands Agent responses to A2A events.
 """
 
 import logging
-from typing import Any
 
 from a2a.server.agent_execution import AgentExecutor, RequestContext
 from a2a.server.events import EventQueue
-from a2a.server.tasks import TaskUpdater
-from a2a.types import InternalError, Part, TaskState, TextPart, UnsupportedOperationError
-from a2a.utils import new_agent_text_message, new_task
+from a2a.types import UnsupportedOperationError
+from a2a.utils import new_agent_text_message
 from a2a.utils.errors import ServerError
 
 from ...agent.agent import Agent as SAAgent
-from ...agent.agent import AgentResult as SAAgentResult
+from ...agent.agent_result import AgentResult as SAAgentResult
 
-logger = logging.getLogger(__name__)
+log = logging.getLogger(__name__)
 
 
 class StrandsA2AExecutor(AgentExecutor):
-    """Executor that adapts a Strands Agent to the A2A protocol.
-
-    This executor uses streaming mode to handle the execution of agent requests
-    and converts Strands Agent responses to A2A protocol events.
-    """
+    """Executor that adapts a Strands Agent to the A2A protocol."""
 
     def __init__(self, agent: SAAgent):
         """Initialize a StrandsA2AExecutor.
 
         Args:
-            agent: The Strands Agent instance to adapt to the A2A protocol.
+            agent: The Strands Agent to adapt to the A2A protocol.
         """
         self.agent = agent
 
@@ -46,97 +37,24 @@ async def execute(
     ) -> None:
         """Execute a request using the Strands Agent and send the response as A2A events.
 
-        This method executes the user's input using the Strands Agent in streaming mode
-        and converts the agent's response to A2A events.
-
-        Args:
-            context: The A2A request context, containing the user's input and task metadata.
-            event_queue: The A2A event queue used to send response events back to the client.
-
-        Raises:
-            ServerError: If an error occurs during agent execution
-        """
-        task = context.current_task
-        if not task:
-            task = new_task(context.message)  # type: ignore
-            await event_queue.enqueue_event(task)
-
-        updater = TaskUpdater(event_queue, task.id, task.contextId)
-
-        try:
-            await self._execute_streaming(context, updater)
-        except Exception as e:
-            raise ServerError(error=InternalError()) from e
-
-    async def _execute_streaming(self, context: RequestContext, updater: TaskUpdater) -> None:
-        """Execute request in streaming mode.
-
-        Streams the agent's response in real-time, sending incremental updates
-        as they become available from the agent.
+        This method executes the user's input using the Strands Agent and converts
+        the agent's response to A2A events, which are then sent to the event queue.
 
         Args:
             context: The A2A request context, containing the user's input and other metadata.
-            updater: The task updater for managing task state and sending updates.
-        """
-        logger.info("Executing request in streaming mode")
-        user_input = context.get_user_input()
-        try:
-            async for event in self.agent.stream_async(user_input):
-                await self._handle_streaming_event(event, updater)
-        except Exception:
-            logger.exception("Error in streaming execution")
-            raise
-
-    async def _handle_streaming_event(self, event: dict[str, Any], updater: TaskUpdater) -> None:
-        """Handle a single streaming event from the Strands Agent.
-
-        Processes streaming events from the agent, converting data chunks to A2A
-        task updates and handling the final result when streaming is complete.
-
-        Args:
-            event: The streaming event from the agent, containing either 'data' for
-                incremental content or 'result' for the final response.
-            updater: The task updater for managing task state and sending updates.
-        """
-        logger.debug("Streaming event: %s", event)
-        if "data" in event:
-            if text_content := event["data"]:
-                await updater.update_status(
-                    TaskState.working,
-                    new_agent_text_message(
-                        text_content,
-                        updater.context_id,
-                        updater.task_id,
-                    ),
-                )
-        elif "result" in event:
-            await self._handle_agent_result(event["result"], updater)
-        else:
-            logger.warning("Unexpected streaming event: %s", event)
-
-    async def _handle_agent_result(self, result: SAAgentResult | None, updater: TaskUpdater) -> None:
-        """Handle the final result from the Strands Agent.
-
-        Processes the agent's final result, extracts text content from the response,
-        and adds it as an artifact to the task before marking the task as complete.
-
-        Args:
-            result: The agent result object containing the final response, or None if no result.
-            updater: The task updater for managing task state and adding the final artifact.
+            event_queue: The A2A event queue, used to send response events.
         """
-        if final_content := str(result):
-            await updater.add_artifact(
-                [Part(root=TextPart(text=final_content))],
-                name="agent_response",
-            )
-        await updater.complete()
+        result: SAAgentResult = self.agent(context.get_user_input())
+        if result.message and "content" in result.message:
+            for content_block in result.message["content"]:
+                if "text" in content_block:
+                    await event_queue.enqueue_event(new_agent_text_message(content_block["text"]))
 
     async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None:
         """Cancel an ongoing execution.
 
-        This method is called when a request cancellation is requested. Currently,
-        cancellation is not supported by the Strands Agent executor, so this method
-        always raises an UnsupportedOperationError.
+        This method is called when a request is cancelled. Currently, cancellation
+        is not supported, so this method raises an UnsupportedOperationError.
 
         Args:
             context: The A2A request context.
@@ -146,5 +64,4 @@ async def cancel(self, context: RequestContext, event_queue: EventQueue) -> None
             ServerError: Always raised with an UnsupportedOperationError, as cancellation
                 is not currently supported.
         """
-        logger.warning("Cancellation requested but not supported")
         raise ServerError(error=UnsupportedOperationError())
diff --git a/src/strands/multiagent/a2a/server.py b/src/strands/multiagent/a2a/server.py
index 9442c34db..0e271b1cf 100644
--- a/src/strands/multiagent/a2a/server.py
+++ b/src/strands/multiagent/a2a/server.py
@@ -34,10 +34,12 @@ def __init__(
         version: str = "0.0.1",
         skills: list[AgentSkill] | None = None,
     ):
-        """Initialize an A2A-compatible server from a Strands agent.
+        """Initialize an A2A-compatible agent from a Strands agent.
 
         Args:
             agent: The Strands Agent to wrap with A2A compatibility.
+            name: The name of the agent, used in the AgentCard.
+            description: A description of the agent's capabilities, used in the AgentCard.
             host: The hostname or IP address to bind the A2A server to. Defaults to "0.0.0.0".
             port: The port to bind the A2A server to. Defaults to 9000.
             version: The version of the agent. Defaults to "0.0.1".
@@ -50,7 +52,8 @@ def __init__(
         self.strands_agent = agent
         self.name = self.strands_agent.name
         self.description = self.strands_agent.description
-        self.capabilities = AgentCapabilities(streaming=True)
+        # TODO: enable configurable capabilities and request handler
+        self.capabilities = AgentCapabilities()
         self.request_handler = DefaultRequestHandler(
             agent_executor=StrandsA2AExecutor(self.strands_agent),
             task_store=InMemoryTaskStore(),
diff --git a/src/strands/telemetry/tracer.py b/src/strands/telemetry/tracer.py
index 10d230811..7f8abb1e6 100644
--- a/src/strands/telemetry/tracer.py
+++ b/src/strands/telemetry/tracer.py
@@ -10,7 +10,6 @@
 from typing import Any, Dict, Mapping, Optional
 
 import opentelemetry.trace as trace_api
-from opentelemetry.instrumentation.threading import ThreadingInstrumentor
 from opentelemetry.trace import Span, StatusCode
 
 from ..agent.agent_result import AgentResult
@@ -90,7 +89,6 @@ def __init__(
 
         self.tracer_provider = trace_api.get_tracer_provider()
         self.tracer = self.tracer_provider.get_tracer(self.service_name)
-        ThreadingInstrumentor().instrument()
 
     def _start_span(
         self,
@@ -407,7 +405,7 @@ def end_event_loop_cycle_span(
 
     def start_agent_span(
         self,
-        message: Message,
+        prompt: str,
         agent_name: str,
         model_id: Optional[str] = None,
         tools: Optional[list] = None,
@@ -417,7 +415,7 @@ def start_agent_span(
         """Start a new span for an agent invocation.
 
         Args:
-            message: The user message being sent to the agent.
+            prompt: The user prompt being sent to the agent.
             agent_name: Name of the agent.
             model_id: Optional model identifier.
             tools: Optional list of tools being used.
@@ -454,7 +452,7 @@ def start_agent_span(
             span,
             "gen_ai.user.message",
             event_attributes={
-                "content": serialize(message["content"]),
+                "content": prompt,
             },
         )
 
diff --git a/src/strands/tools/decorator.py b/src/strands/tools/decorator.py
index a91d6c255..46a6320ad 100644
--- a/src/strands/tools/decorator.py
+++ b/src/strands/tools/decorator.py
@@ -40,19 +40,20 @@ def my_tool(param1: str, param2: int = 42) -> dict:
     ```
 """
 
-import asyncio
 import functools
 import inspect
 import logging
 from typing import (
     Any,
     Callable,
+    Dict,
     Generic,
     Optional,
     ParamSpec,
     Type,
     TypeVar,
     Union,
+    cast,
     get_type_hints,
     overload,
 )
@@ -61,7 +62,7 @@ def my_tool(param1: str, param2: int = 42) -> dict:
 from pydantic import BaseModel, Field, create_model
 from typing_extensions import override
 
-from ..types.tools import AgentTool, JSONSchema, ToolGenerator, ToolSpec, ToolUse
+from ..types.tools import AgentTool, JSONSchema, ToolResult, ToolSpec, ToolUse
 
 logger = logging.getLogger(__name__)
 
@@ -118,7 +119,7 @@ def _create_input_model(self) -> Type[BaseModel]:
         Returns:
             A Pydantic BaseModel class customized for the function's parameters.
         """
-        field_definitions: dict[str, Any] = {}
+        field_definitions: Dict[str, Any] = {}
 
         for name, param in self.signature.parameters.items():
             # Skip special parameters
@@ -178,7 +179,7 @@ def extract_metadata(self) -> ToolSpec:
 
         return tool_spec
 
-    def _clean_pydantic_schema(self, schema: dict[str, Any]) -> None:
+    def _clean_pydantic_schema(self, schema: Dict[str, Any]) -> None:
         """Clean up Pydantic schema to match Strands' expected format.
 
         Pydantic's JSON schema output includes several elements that aren't needed for Strands Agent tools and could
@@ -226,7 +227,7 @@ def _clean_pydantic_schema(self, schema: dict[str, Any]) -> None:
                     if key in prop_schema:
                         del prop_schema[key]
 
-    def validate_input(self, input_data: dict[str, Any]) -> dict[str, Any]:
+    def validate_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
         """Validate input data using the Pydantic model.
 
         This method ensures that the input data meets the expected schema before it's passed to the actual function. It
@@ -269,32 +270,32 @@ class DecoratedFunctionTool(AgentTool, Generic[P, R]):
 
     _tool_name: str
     _tool_spec: ToolSpec
-    _tool_func: Callable[P, R]
     _metadata: FunctionToolMetadata
+    original_function: Callable[P, R]
 
     def __init__(
         self,
+        function: Callable[P, R],
         tool_name: str,
         tool_spec: ToolSpec,
-        tool_func: Callable[P, R],
         metadata: FunctionToolMetadata,
     ):
         """Initialize the decorated function tool.
 
         Args:
+            function: The original function being decorated.
             tool_name: The name to use for the tool (usually the function name).
             tool_spec: The tool specification containing metadata for Agent integration.
-            tool_func: The original function being decorated.
             metadata: The FunctionToolMetadata object with extracted function information.
         """
         super().__init__()
 
-        self._tool_name = tool_name
+        self.original_function = function
         self._tool_spec = tool_spec
-        self._tool_func = tool_func
         self._metadata = metadata
+        self._tool_name = tool_name
 
-        functools.update_wrapper(wrapper=self, wrapped=self._tool_func)
+        functools.update_wrapper(wrapper=self, wrapped=self.original_function)
 
     def __get__(self, instance: Any, obj_type: Optional[Type] = None) -> "DecoratedFunctionTool[P, R]":
         """Descriptor protocol implementation for proper method binding.
@@ -322,10 +323,12 @@ def my_tool():
             tool = instance.my_tool
             ```
         """
-        if instance is not None and not inspect.ismethod(self._tool_func):
+        if instance is not None and not inspect.ismethod(self.original_function):
             # Create a bound method
-            tool_func = self._tool_func.__get__(instance, instance.__class__)
-            return DecoratedFunctionTool(self._tool_name, self._tool_spec, tool_func, self._metadata)
+            new_callback = self.original_function.__get__(instance, instance.__class__)
+            return DecoratedFunctionTool(
+                function=new_callback, tool_name=self.tool_name, tool_spec=self.tool_spec, metadata=self._metadata
+            )
 
         return self
 
@@ -342,7 +345,22 @@ def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R:
         Returns:
             The result of the original function call.
         """
-        return self._tool_func(*args, **kwargs)
+        if (
+            len(args) > 0
+            and isinstance(args[0], dict)
+            and (not args[0] or "toolUseId" in args[0] or "input" in args[0])
+        ):
+            # This block is only for backwards compatability so we cast as any for now
+            logger.warning(
+                "issue=<%s> | "
+                "passing tool use into a function instead of using .invoke will be removed in a future release",
+                "https://github.com/strands-agents/sdk-python/pull/258",
+            )
+            tool_use = cast(Any, args[0])
+
+            return cast(R, self.invoke(tool_use, **kwargs))
+
+        return self.original_function(*args, **kwargs)
 
     @property
     def tool_name(self) -> str:
@@ -371,11 +389,10 @@ def tool_type(self) -> str:
         """
         return "function"
 
-    @override
-    async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerator:
-        """Stream the tool with a tool use specification.
+    def invoke(self, tool: ToolUse, *args: Any, **kwargs: dict[str, Any]) -> ToolResult:
+        """Invoke the tool with a tool use specification.
 
-        This method handles tool use streams from a Strands Agent. It validates the input,
+        This method handles tool use invocations from a Strands Agent. It validates the input,
         calls the function, and formats the result according to the expected tool result format.
 
         Key operations:
@@ -387,13 +404,15 @@ async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerat
         5. Handle and format any errors that occur
 
         Args:
-            tool_use: The tool use specification from the Agent.
-            kwargs: Additional keyword arguments, may include 'agent' reference.
+            tool: The tool use specification from the Agent.
+            *args: Additional positional arguments (not typically used).
+            **kwargs: Additional keyword arguments, may include 'agent' reference.
 
-        Yields:
-            Tool events with the last being the tool result.
+        Returns:
+            A standardized tool result dictionary with status and content.
         """
         # This is a tool use call - process accordingly
+        tool_use = tool
         tool_use_id = tool_use.get("toolUseId", "unknown")
         tool_input = tool_use.get("input", {})
 
@@ -405,21 +424,18 @@ async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerat
             if "agent" in kwargs and "agent" in self._metadata.signature.parameters:
                 validated_input["agent"] = kwargs.get("agent")
 
-            # "Too few arguments" expected, hence the type ignore
-            if inspect.iscoroutinefunction(self._tool_func):
-                result = await self._tool_func(**validated_input)  # type: ignore
-            else:
-                result = await asyncio.to_thread(self._tool_func, **validated_input)  # type: ignore
+            # We get "too few arguments here" but because that's because fof the way we're calling it
+            result = self.original_function(**validated_input)  # type: ignore
 
             # FORMAT THE RESULT for Strands Agent
             if isinstance(result, dict) and "status" in result and "content" in result:
                 # Result is already in the expected format, just add toolUseId
                 result["toolUseId"] = tool_use_id
-                yield result
+                return cast(ToolResult, result)
             else:
                 # Wrap any other return value in the standard format
                 # Always include at least one content item for consistency
-                yield {
+                return {
                     "toolUseId": tool_use_id,
                     "status": "success",
                     "content": [{"text": str(result)}],
@@ -428,7 +444,7 @@ async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerat
         except ValueError as e:
             # Special handling for validation errors
             error_msg = str(e)
-            yield {
+            return {
                 "toolUseId": tool_use_id,
                 "status": "error",
                 "content": [{"text": f"Error: {error_msg}"}],
@@ -437,7 +453,7 @@ async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerat
             # Return error result with exception details for any other error
             error_type = type(e).__name__
             error_msg = str(e)
-            yield {
+            return {
                 "toolUseId": tool_use_id,
                 "status": "error",
                 "content": [{"text": f"Error: {error_type} - {error_msg}"}],
@@ -460,7 +476,7 @@ def get_display_properties(self) -> dict[str, str]:
             Function properties (e.g., function name).
         """
         properties = super().get_display_properties()
-        properties["Function"] = self._tool_func.__name__
+        properties["Function"] = self.original_function.__name__
         return properties
 
 
@@ -557,7 +573,7 @@ def decorator(f: T) -> "DecoratedFunctionTool[P, R]":
         if not isinstance(tool_name, str):
             raise ValueError(f"Tool name must be a string, got {type(tool_name)}")
 
-        return DecoratedFunctionTool(tool_name, tool_spec, f, tool_meta)
+        return DecoratedFunctionTool(function=f, tool_name=tool_name, tool_spec=tool_spec, metadata=tool_meta)
 
     # Handle both @tool and @tool() syntax
     if func is None:
diff --git a/src/strands/tools/executor.py b/src/strands/tools/executor.py
index 5c17f2be6..2291e0ff4 100644
--- a/src/strands/tools/executor.py
+++ b/src/strands/tools/executor.py
@@ -1,9 +1,11 @@
 """Tool execution functionality for the event loop."""
 
-import asyncio
 import logging
+import queue
+import threading
 import time
-from typing import Any, Optional, cast
+from concurrent.futures import ThreadPoolExecutor
+from typing import Any, Generator, Optional, cast
 
 from opentelemetry import trace
 
@@ -16,7 +18,7 @@
 logger = logging.getLogger(__name__)
 
 
-async def run_tools(
+def run_tools(
     handler: RunToolHandler,
     tool_uses: list[ToolUse],
     event_loop_metrics: EventLoopMetrics,
@@ -24,8 +26,9 @@ async def run_tools(
     tool_results: list[ToolResult],
     cycle_trace: Trace,
     parent_span: Optional[trace.Span] = None,
-) -> ToolGenerator:
-    """Execute tools concurrently.
+    thread_pool: Optional[ThreadPoolExecutor] = None,
+) -> Generator[dict[str, Any], None, None]:
+    """Execute tools either in parallel or sequentially.
 
     Args:
         handler: Tool handler processing function.
@@ -35,38 +38,26 @@ async def run_tools(
         tool_results: List to populate with tool results.
         cycle_trace: Parent trace for the current cycle.
         parent_span: Parent span for the current cycle.
+        thread_pool: Optional thread pool for parallel processing.
 
     Yields:
-        Events of the tool stream. Tool results are appended to `tool_results`.
+        Events of the tool invocations. Tool results are appended to `tool_results`.
     """
 
-    async def work(
-        tool_use: ToolUse,
-        worker_id: int,
-        worker_queue: asyncio.Queue,
-        worker_event: asyncio.Event,
-        stop_event: object,
-    ) -> ToolResult:
+    def handle(tool: ToolUse) -> ToolGenerator:
         tracer = get_tracer()
-        tool_call_span = tracer.start_tool_call_span(tool_use, parent_span)
+        tool_call_span = tracer.start_tool_call_span(tool, parent_span)
 
-        tool_name = tool_use["name"]
+        tool_name = tool["name"]
         tool_trace = Trace(f"Tool: {tool_name}", parent_id=cycle_trace.id, raw_name=tool_name)
         tool_start_time = time.time()
 
-        try:
-            async for event in handler(tool_use):
-                worker_queue.put_nowait((worker_id, event))
-                await worker_event.wait()
-
-            result = cast(ToolResult, event)
-        finally:
-            worker_queue.put_nowait((worker_id, stop_event))
+        result = yield from handler(tool)
 
         tool_success = result.get("status") == "success"
         tool_duration = time.time() - tool_start_time
         message = Message(role="user", content=[{"toolResult": result}])
-        event_loop_metrics.add_tool_usage(tool_use, tool_duration, tool_trace, tool_success, message)
+        event_loop_metrics.add_tool_usage(tool, tool_duration, tool_trace, tool_success, message)
         cycle_trace.add_child(tool_trace)
 
         if tool_call_span:
@@ -74,27 +65,52 @@ async def work(
 
         return result
 
+    def work(
+        tool: ToolUse,
+        worker_id: int,
+        worker_queue: queue.Queue,
+        worker_event: threading.Event,
+    ) -> ToolResult:
+        events = handle(tool)
+
+        try:
+            while True:
+                event = next(events)
+                worker_queue.put((worker_id, event))
+                worker_event.wait()
+
+        except StopIteration as stop:
+            return cast(ToolResult, stop.value)
+
     tool_uses = [tool_use for tool_use in tool_uses if tool_use.get("toolUseId") not in invalid_tool_use_ids]
-    worker_queue: asyncio.Queue[tuple[int, Any]] = asyncio.Queue()
-    worker_events = [asyncio.Event() for _ in tool_uses]
-    stop_event = object()
-
-    workers = [
-        asyncio.create_task(work(tool_use, worker_id, worker_queue, worker_events[worker_id], stop_event))
-        for worker_id, tool_use in enumerate(tool_uses)
-    ]
-
-    worker_count = len(workers)
-    while worker_count:
-        worker_id, event = await worker_queue.get()
-        if event is stop_event:
-            worker_count -= 1
-            continue
-
-        yield event
-        worker_events[worker_id].set()
-
-    tool_results.extend([worker.result() for worker in workers])
+
+    if thread_pool:
+        logger.debug("tool_count=<%s> | executing tools in parallel", len(tool_uses))
+
+        worker_queue: queue.Queue[tuple[int, dict[str, Any]]] = queue.Queue()
+        worker_events = [threading.Event() for _ in range(len(tool_uses))]
+
+        workers = [
+            thread_pool.submit(work, tool_use, worker_id, worker_queue, worker_events[worker_id])
+            for worker_id, tool_use in enumerate(tool_uses)
+        ]
+        logger.debug("tool_count=<%s> | submitted tasks to parallel executor", len(tool_uses))
+
+        while not all(worker.done() for worker in workers):
+            if not worker_queue.empty():
+                worker_id, event = worker_queue.get()
+                yield event
+                worker_events[worker_id].set()
+
+            time.sleep(0.001)
+
+        tool_results.extend([worker.result() for worker in workers])
+
+    else:
+        # Sequential execution fallback
+        for tool_use in tool_uses:
+            result = yield from handle(tool_use)
+            tool_results.append(result)
 
 
 def validate_and_prepare_tools(
diff --git a/src/strands/tools/loader.py b/src/strands/tools/loader.py
index 56433324e..7bf5c5e75 100644
--- a/src/strands/tools/loader.py
+++ b/src/strands/tools/loader.py
@@ -108,7 +108,7 @@ def load_python_tool(tool_path: str, tool_name: str) -> AgentTool:
             if not callable(tool_func):
                 raise TypeError(f"Tool {tool_name} function is not callable")
 
-            return PythonAgentTool(tool_name, tool_spec, tool_func)
+            return PythonAgentTool(tool_name, tool_spec, callback=tool_func)
 
         except Exception:
             logger.exception("tool_name=<%s>, sys_path=<%s> | failed to load python tool", tool_name, sys.path)
diff --git a/src/strands/tools/mcp/mcp_agent_tool.py b/src/strands/tools/mcp/mcp_agent_tool.py
index 40119f9db..e24c30b48 100644
--- a/src/strands/tools/mcp/mcp_agent_tool.py
+++ b/src/strands/tools/mcp/mcp_agent_tool.py
@@ -5,14 +5,12 @@
 It allows MCP tools to be seamlessly integrated and used within the agent ecosystem.
 """
 
-import asyncio
 import logging
 from typing import TYPE_CHECKING, Any
 
 from mcp.types import Tool as MCPTool
-from typing_extensions import override
 
-from ...types.tools import AgentTool, ToolGenerator, ToolSpec, ToolUse
+from ...types.tools import AgentTool, ToolResult, ToolSpec, ToolUse
 
 if TYPE_CHECKING:
     from .mcp_client import MCPClient
@@ -75,22 +73,13 @@ def tool_type(self) -> str:
         """
         return "python"
 
-    @override
-    async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerator:
-        """Stream the MCP tool.
+    def invoke(self, tool: ToolUse, *args: Any, **kwargs: dict[str, Any]) -> ToolResult:
+        """Invoke the MCP tool.
 
-        This method delegates the tool stream to the MCP server connection, passing the tool use ID, tool name, and
-        input arguments.
-
-        Yields:
-            Tool events with the last being the tool result.
+        This method delegates the tool invocation to the MCP server connection,
+        passing the tool use ID, tool name, and input arguments.
         """
-        logger.debug("tool_name=<%s>, tool_use_id=<%s> | streaming", self.tool_name, tool_use["toolUseId"])
-
-        result = await asyncio.to_thread(
-            self.mcp_client.call_tool_sync,
-            tool_use_id=tool_use["toolUseId"],
-            name=self.tool_name,
-            arguments=tool_use["input"],
+        logger.debug("invoking MCP tool '%s' with tool_use_id=%s", self.tool_name, tool["toolUseId"])
+        return self.mcp_client.call_tool_sync(
+            tool_use_id=tool["toolUseId"], name=self.tool_name, arguments=tool["input"]
         )
-        yield result
diff --git a/src/strands/tools/registry.py b/src/strands/tools/registry.py
index b0d84946d..5ab611e0c 100644
--- a/src/strands/tools/registry.py
+++ b/src/strands/tools/registry.py
@@ -17,7 +17,7 @@
 
 from strands.tools.decorator import DecoratedFunctionTool
 
-from ..types.tools import AgentTool, ToolSpec
+from ..types.tools import AgentTool, Tool, ToolChoice, ToolChoiceAuto, ToolConfig, ToolSpec
 from .tools import PythonAgentTool, normalize_schema, normalize_tool_spec
 
 logger = logging.getLogger(__name__)
@@ -347,7 +347,11 @@ def reload_tool(self, tool_name: str) -> None:
             # Validate tool spec
             self.validate_tool_spec(module.TOOL_SPEC)
 
-            new_tool = PythonAgentTool(tool_name, module.TOOL_SPEC, tool_function)
+            new_tool = PythonAgentTool(
+                tool_name=tool_name,
+                tool_spec=module.TOOL_SPEC,
+                callback=tool_function,
+            )
 
             # Register the tool
             self.register_tool(new_tool)
@@ -427,7 +431,11 @@ def initialize_tools(self, load_tools_from_directory: bool = True) -> None:
                                     continue
 
                                 tool_spec = module.TOOL_SPEC
-                                tool = PythonAgentTool(tool_name, tool_spec, tool_function)
+                                tool = PythonAgentTool(
+                                    tool_name=tool_name,
+                                    tool_spec=tool_spec,
+                                    callback=tool_function,
+                                )
                                 self.register_tool(tool)
                                 successful_loads += 1
 
@@ -455,7 +463,11 @@ def initialize_tools(self, load_tools_from_directory: bool = True) -> None:
                                 continue
 
                             tool_spec = module.TOOL_SPEC
-                            tool = PythonAgentTool(tool_name, tool_spec, tool_function)
+                            tool = PythonAgentTool(
+                                tool_name=tool_name,
+                                tool_spec=tool_spec,
+                                callback=tool_function,
+                            )
                             self.register_tool(tool)
                             successful_loads += 1
 
@@ -472,15 +484,20 @@ def initialize_tools(self, load_tools_from_directory: bool = True) -> None:
             for tool_name, error in tool_import_errors.items():
                 logger.debug("tool_name=<%s> | import error | %s", tool_name, error)
 
-    def get_all_tool_specs(self) -> list[ToolSpec]:
-        """Get all the tool specs for all tools in this registry..
+    def initialize_tool_config(self) -> ToolConfig:
+        """Initialize tool configuration from tool handler with optional filtering.
 
         Returns:
-            A list of ToolSpecs.
+            Tool config.
         """
         all_tools = self.get_all_tools_config()
-        tools: List[ToolSpec] = [tool_spec for tool_spec in all_tools.values()]
-        return tools
+
+        tools: List[Tool] = [{"toolSpec": tool_spec} for tool_spec in all_tools.values()]
+
+        return ToolConfig(
+            tools=tools,
+            toolChoice=cast(ToolChoice, {"auto": ToolChoiceAuto()}),
+        )
 
     def validate_tool_spec(self, tool_spec: ToolSpec) -> None:
         """Validate tool specification against required schema.
diff --git a/src/strands/tools/tools.py b/src/strands/tools/tools.py
index 1d05bfa6f..1694f98c4 100644
--- a/src/strands/tools/tools.py
+++ b/src/strands/tools/tools.py
@@ -4,15 +4,11 @@
 Python module-based tools, as well as utilities for validating tool uses and normalizing tool schemas.
 """
 
-import asyncio
-import inspect
 import logging
 import re
-from typing import Any
+from typing import Any, Callable, Dict
 
-from typing_extensions import override
-
-from ..types.tools import AgentTool, ToolFunc, ToolGenerator, ToolSpec, ToolUse
+from ..types.tools import AgentTool, ToolResult, ToolSpec, ToolUse
 
 logger = logging.getLogger(__name__)
 
@@ -64,7 +60,7 @@ def validate_tool_use_name(tool: ToolUse) -> None:
         raise InvalidToolUseNameException(message)
 
 
-def _normalize_property(prop_name: str, prop_def: Any) -> dict[str, Any]:
+def _normalize_property(prop_name: str, prop_def: Any) -> Dict[str, Any]:
     """Normalize a single property definition.
 
     Args:
@@ -92,7 +88,7 @@ def _normalize_property(prop_name: str, prop_def: Any) -> dict[str, Any]:
     return normalized_prop
 
 
-def normalize_schema(schema: dict[str, Any]) -> dict[str, Any]:
+def normalize_schema(schema: Dict[str, Any]) -> Dict[str, Any]:
     """Normalize a JSON schema to match expectations.
 
     This function recursively processes nested objects to preserve the complete schema structure.
@@ -152,23 +148,25 @@ class PythonAgentTool(AgentTool):
     as SDK tools.
     """
 
+    _callback: Callable[[ToolUse, Any, dict[str, Any]], ToolResult]
     _tool_name: str
     _tool_spec: ToolSpec
-    _tool_func: ToolFunc
 
-    def __init__(self, tool_name: str, tool_spec: ToolSpec, tool_func: ToolFunc) -> None:
+    def __init__(
+        self, tool_name: str, tool_spec: ToolSpec, callback: Callable[[ToolUse, Any, dict[str, Any]], ToolResult]
+    ) -> None:
         """Initialize a Python-based tool.
 
         Args:
             tool_name: Unique identifier for the tool.
             tool_spec: Tool specification defining parameters and behavior.
-            tool_func: Python function to execute when the tool is invoked.
+            callback: Python function to execute when the tool is invoked.
         """
         super().__init__()
 
         self._tool_name = tool_name
         self._tool_spec = tool_spec
-        self._tool_func = tool_func
+        self._callback = callback
 
     @property
     def tool_name(self) -> str:
@@ -197,20 +195,15 @@ def tool_type(self) -> str:
         """
         return "python"
 
-    @override
-    async def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerator:
-        """Stream the Python function with the given tool use request.
+    def invoke(self, tool: ToolUse, *args: Any, **kwargs: dict[str, Any]) -> ToolResult:
+        """Execute the Python function with the given tool use request.
 
         Args:
-            tool_use: The tool use request.
-            kwargs: Additional keyword arguments to pass to the underlying tool function.
+            tool: The tool use request.
+            *args: Additional positional arguments to pass to the underlying callback function.
+            **kwargs: Additional keyword arguments to pass to the underlying callback function.
 
-        Yields:
-        Tool events with the last being the tool result.
+        Returns:
+            A ToolResult containing the status and content from the callback execution.
         """
-        if inspect.iscoroutinefunction(self._tool_func):
-            result = await self._tool_func(tool_use, **kwargs)
-        else:
-            result = await asyncio.to_thread(self._tool_func, tool_use, **kwargs)
-
-        yield result
+        return self._callback(tool, *args, **kwargs)
diff --git a/src/strands/types/models/openai.py b/src/strands/types/models/openai.py
index 09d24bd80..30971c2ba 100644
--- a/src/strands/types/models/openai.py
+++ b/src/strands/types/models/openai.py
@@ -34,6 +34,32 @@ class OpenAIModel(Model, abc.ABC):
 
     config: dict[str, Any]
 
+    @staticmethod
+    def b64encode(data: bytes) -> bytes:
+        """Base64 encode the provided data.
+
+        If the data is already base64 encoded, we do nothing.
+        Note, this is a temporary method used to provide a warning to users who pass in base64 encoded data. In future
+        versions, images and documents will be base64 encoded on behalf of customers for consistency with the other
+        providers and general convenience.
+
+        Args:
+            data: Data to encode.
+
+        Returns:
+            Base64 encoded data.
+        """
+        try:
+            base64.b64decode(data, validate=True)
+            logger.warning(
+                "issue=<%s> | base64 encoded images and documents will not be accepted in future versions",
+                "https://github.com/strands-agents/sdk-python/issues/252",
+            )
+        except ValueError:
+            data = base64.b64encode(data)
+
+        return data
+
     @classmethod
     def format_request_message_content(cls, content: ContentBlock) -> dict[str, Any]:
         """Format an OpenAI compatible content block.
@@ -60,7 +86,7 @@ def format_request_message_content(cls, content: ContentBlock) -> dict[str, Any]
 
         if "image" in content:
             mime_type = mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream")
-            image_data = base64.b64encode(content["image"]["source"]["bytes"]).decode("utf-8")
+            image_data = OpenAIModel.b64encode(content["image"]["source"]["bytes"]).decode("utf-8")
 
             return {
                 "image_url": {
diff --git a/src/strands/types/tools.py b/src/strands/types/tools.py
index e2895f2dd..798cbc185 100644
--- a/src/strands/types/tools.py
+++ b/src/strands/types/tools.py
@@ -6,7 +6,7 @@
 """
 
 from abc import ABC, abstractmethod
-from typing import Any, AsyncGenerator, Awaitable, Callable, Literal, Protocol, Union
+from typing import Any, Callable, Generator, Literal, Union
 
 from typing_extensions import TypedDict
 
@@ -130,11 +130,11 @@ class ToolChoiceTool(TypedDict):
 - "tool": The model must use the specified tool
 """
 
-RunToolHandler = Callable[[ToolUse], AsyncGenerator[dict[str, Any], None]]
+RunToolHandler = Callable[[ToolUse], Generator[dict[str, Any], None, ToolResult]]
 """Callback that runs a single tool and streams back results."""
 
-ToolGenerator = AsyncGenerator[Any, None]
-"""Generator of tool events with the last being the tool result."""
+ToolGenerator = Generator[dict[str, Any], None, ToolResult]
+"""Generator of tool events and a returned tool result."""
 
 
 class ToolConfig(TypedDict):
@@ -149,30 +149,11 @@ class ToolConfig(TypedDict):
     toolChoice: ToolChoice
 
 
-class ToolFunc(Protocol):
-    """Function signature for Python decorated and module based tools."""
-
-    __name__: str
-
-    def __call__(
-        self, *args: Any, **kwargs: Any
-    ) -> Union[
-        ToolResult,
-        Awaitable[ToolResult],
-    ]:
-        """Function signature for Python decorated and module based tools.
-
-        Returns:
-            Tool result or awaitable tool result.
-        """
-        ...
-
-
 class AgentTool(ABC):
     """Abstract base class for all SDK tools.
 
     This class defines the interface that all tool implementations must follow. Each tool must provide its name,
-    specification, and implement a stream method that executes the tool's functionality.
+    specification, and implement an invoke method that executes the tool's functionality.
     """
 
     _is_dynamic: bool
@@ -216,17 +197,18 @@ def supports_hot_reload(self) -> bool:
 
     @abstractmethod
     # pragma: no cover
-    def stream(self, tool_use: ToolUse, kwargs: dict[str, Any]) -> ToolGenerator:
-        """Stream tool events and return the final result.
+    def invoke(self, tool: ToolUse, *args: Any, **kwargs: dict[str, Any]) -> ToolResult:
+        """Execute the tool's functionality with the given tool use request.
 
         Args:
-            tool_use: The tool use request containing tool ID and parameters.
-            kwargs: Keyword arguments to pass to the tool.
+            tool: The tool use request containing tool ID and parameters.
+            *args: Positional arguments to pass to the tool.
+            **kwargs: Keyword arguments to pass to the tool.
 
-        Yield:
-            Tool events with the last being the tool result.
+        Returns:
+            The result of the tool execution.
         """
-        ...
+        pass
 
     @property
     def is_dynamic(self) -> bool:
diff --git a/tests-integ/__init__.py b/tests-integ/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/tests-integ/conftest.py b/tests-integ/conftest.py
new file mode 100644
index 000000000..4b38540c5
--- /dev/null
+++ b/tests-integ/conftest.py
@@ -0,0 +1,20 @@
+import pytest
+
+## Async
+
+
+@pytest.fixture(scope="session")
+def agenerator():
+    async def agenerator(items):
+        for item in items:
+            yield item
+
+    return agenerator
+
+
+@pytest.fixture(scope="session")
+def alist():
+    async def alist(items):
+        return [item async for item in items]
+
+    return alist
diff --git a/tests-integ/echo_server.py b/tests-integ/echo_server.py
new file mode 100644
index 000000000..d309607a8
--- /dev/null
+++ b/tests-integ/echo_server.py
@@ -0,0 +1,39 @@
+"""
+Echo Server for MCP Integration Testing
+
+This module implements a simple echo server using the Model Context Protocol (MCP).
+It provides a basic tool that echoes back any input string, which is useful for
+testing the MCP communication flow and validating that messages are properly
+transmitted between the client and server.
+
+The server runs with stdio transport, making it suitable for integration tests
+where the client can spawn this process and communicate with it through standard
+input/output streams.
+
+Usage:
+    Run this file directly to start the echo server:
+    $ python echo_server.py
+"""
+
+from mcp.server import FastMCP
+
+
+def start_echo_server():
+    """
+    Initialize and start the MCP echo server.
+
+    Creates a FastMCP server instance with a single 'echo' tool that returns
+    any input string back to the caller. The server uses stdio transport
+    for communication.
+    """
+    mcp = FastMCP("Echo Server")
+
+    @mcp.tool(description="Echos response back to the user")
+    def echo(to_echo: str) -> str:
+        return to_echo
+
+    mcp.run(transport="stdio")
+
+
+if __name__ == "__main__":
+    start_echo_server()
diff --git a/tests-integ/test_agent_async.py b/tests-integ/test_agent_async.py
new file mode 100644
index 000000000..597ba13f7
--- /dev/null
+++ b/tests-integ/test_agent_async.py
@@ -0,0 +1,22 @@
+import pytest
+
+import strands
+
+
+@pytest.fixture
+def agent():
+    return strands.Agent()
+
+
+@pytest.mark.asyncio
+async def test_stream_async(agent):
+    stream = agent.stream_async("hello")
+
+    exp_message = ""
+    async for event in stream:
+        if "event" in event and "contentBlockDelta" in event["event"]:
+            exp_message += event["event"]["contentBlockDelta"]["delta"]["text"]
+
+    tru_message = agent.messages[-1]["content"][0]["text"]
+
+    assert tru_message == exp_message
diff --git a/tests-integ/test_bedrock_cache_point.py b/tests-integ/test_bedrock_cache_point.py
new file mode 100644
index 000000000..82bca22a2
--- /dev/null
+++ b/tests-integ/test_bedrock_cache_point.py
@@ -0,0 +1,31 @@
+from strands import Agent
+from strands.types.content import Messages
+
+
+def test_bedrock_cache_point():
+    messages: Messages = [
+        {
+            "role": "user",
+            "content": [
+                {
+                    "text": "Some really long text!" * 1000  # Minimum token count for cachePoint is 1024 tokens
+                },
+                {"cachePoint": {"type": "default"}},
+            ],
+        },
+        {"role": "assistant", "content": [{"text": "Blue!"}]},
+    ]
+
+    cache_point_usage = 0
+
+    def cache_point_callback_handler(**kwargs):
+        nonlocal cache_point_usage
+        if "event" in kwargs and kwargs["event"] and "metadata" in kwargs["event"] and kwargs["event"]["metadata"]:
+            metadata = kwargs["event"]["metadata"]
+            if "usage" in metadata and metadata["usage"]:
+                if "cacheReadInputTokens" in metadata["usage"] or "cacheWriteInputTokens" in metadata["usage"]:
+                    cache_point_usage += 1
+
+    agent = Agent(messages=messages, callback_handler=cache_point_callback_handler, load_tools_from_directory=False)
+    agent("What is favorite color?")
+    assert cache_point_usage > 0
diff --git a/tests-integ/test_bedrock_guardrails.py b/tests-integ/test_bedrock_guardrails.py
new file mode 100644
index 000000000..bf0be7068
--- /dev/null
+++ b/tests-integ/test_bedrock_guardrails.py
@@ -0,0 +1,160 @@
+import time
+
+import boto3
+import pytest
+
+from strands import Agent
+from strands.models.bedrock import BedrockModel
+
+BLOCKED_INPUT = "BLOCKED_INPUT"
+BLOCKED_OUTPUT = "BLOCKED_OUTPUT"
+
+
+@pytest.fixture(scope="module")
+def boto_session():
+    return boto3.Session(region_name="us-east-1")
+
+
+@pytest.fixture(scope="module")
+def bedrock_guardrail(boto_session):
+    """
+    Fixture that creates a guardrail before tests if it doesn't already exist."
+    """
+
+    client = boto_session.client("bedrock")
+
+    guardrail_name = "test-guardrail-block-cactus"
+    guardrail_id = get_guardrail_id(client, guardrail_name)
+
+    if guardrail_id:
+        print(f"Guardrail {guardrail_name} already exists with ID: {guardrail_id}")
+    else:
+        print(f"Creating guardrail {guardrail_name}")
+        response = client.create_guardrail(
+            name=guardrail_name,
+            description="Testing Guardrail",
+            wordPolicyConfig={
+                "wordsConfig": [
+                    {
+                        "text": "CACTUS",
+                        "inputAction": "BLOCK",
+                        "outputAction": "BLOCK",
+                        "inputEnabled": True,
+                        "outputEnabled": True,
+                    },
+                ],
+            },
+            blockedInputMessaging=BLOCKED_INPUT,
+            blockedOutputsMessaging=BLOCKED_OUTPUT,
+        )
+        guardrail_id = response.get("guardrailId")
+        print(f"Created test guardrail with ID: {guardrail_id}")
+        wait_for_guardrail_active(client, guardrail_id)
+    return guardrail_id
+
+
+def get_guardrail_id(client, guardrail_name):
+    """
+    Retrieves the ID of a guardrail by its name.
+
+    Args:
+        client: The Bedrock client instance
+        guardrail_name: Name of the guardrail to look up
+
+    Returns:
+        str: The ID of the guardrail if found, None otherwise
+    """
+    response = client.list_guardrails()
+    for guardrail in response.get("guardrails", []):
+        if guardrail["name"] == guardrail_name:
+            return guardrail["id"]
+    return None
+
+
+def wait_for_guardrail_active(bedrock_client, guardrail_id, max_attempts=10, delay=5):
+    """
+    Wait for the guardrail to become active
+    """
+    for _ in range(max_attempts):
+        response = bedrock_client.get_guardrail(guardrailIdentifier=guardrail_id)
+        status = response.get("status")
+
+        if status == "READY":
+            print(f"Guardrail {guardrail_id} is now active")
+            return True
+
+        print(f"Waiting for guardrail to become active. Current status: {status}")
+        time.sleep(delay)
+
+    print(f"Guardrail did not become active within {max_attempts * delay} seconds.")
+    raise RuntimeError("Guardrail did not become active.")
+
+
+def test_guardrail_input_intervention(boto_session, bedrock_guardrail):
+    bedrock_model = BedrockModel(
+        guardrail_id=bedrock_guardrail,
+        guardrail_version="DRAFT",
+        boto_session=boto_session,
+    )
+
+    agent = Agent(model=bedrock_model, system_prompt="You are a helpful assistant.", callback_handler=None)
+
+    response1 = agent("CACTUS")
+    response2 = agent("Hello!")
+
+    assert response1.stop_reason == "guardrail_intervened"
+    assert str(response1).strip() == BLOCKED_INPUT
+    assert response2.stop_reason != "guardrail_intervened"
+    assert str(response2).strip() != BLOCKED_INPUT
+
+
+@pytest.mark.parametrize("processing_mode", ["sync", "async"])
+def test_guardrail_output_intervention(boto_session, bedrock_guardrail, processing_mode):
+    bedrock_model = BedrockModel(
+        guardrail_id=bedrock_guardrail,
+        guardrail_version="DRAFT",
+        guardrail_redact_output=False,
+        guardrail_stream_processing_mode=processing_mode,
+        boto_session=boto_session,
+    )
+
+    agent = Agent(
+        model=bedrock_model,
+        system_prompt="When asked to say the word, say CACTUS.",
+        callback_handler=None,
+        load_tools_from_directory=False,
+    )
+
+    response1 = agent("Say the word.")
+    response2 = agent("Hello!")
+    assert response1.stop_reason == "guardrail_intervened"
+    assert BLOCKED_OUTPUT in str(response1)
+    assert response2.stop_reason != "guardrail_intervened"
+    assert BLOCKED_OUTPUT not in str(response2)
+
+
+@pytest.mark.parametrize("processing_mode", ["sync", "async"])
+def test_guardrail_output_intervention_redact_output(bedrock_guardrail, processing_mode):
+    REDACT_MESSAGE = "Redacted."
+    bedrock_model = BedrockModel(
+        guardrail_id=bedrock_guardrail,
+        guardrail_version="DRAFT",
+        guardrail_stream_processing_mode=processing_mode,
+        guardrail_redact_output=True,
+        guardrail_redact_output_message=REDACT_MESSAGE,
+        region_name="us-east-1",
+    )
+
+    agent = Agent(
+        model=bedrock_model,
+        system_prompt="When asked to say the word, say CACTUS.",
+        callback_handler=None,
+        load_tools_from_directory=False,
+    )
+
+    response1 = agent("Say the word.")
+    response2 = agent("Hello!")
+    assert response1.stop_reason == "guardrail_intervened"
+    assert REDACT_MESSAGE in str(response1)
+    assert response2.stop_reason != "guardrail_intervened"
+    assert REDACT_MESSAGE not in str(response2)
diff --git a/tests-integ/test_context_overflow.py b/tests-integ/test_context_overflow.py
new file mode 100644
index 000000000..16dc3c4b8
--- /dev/null
+++ b/tests-integ/test_context_overflow.py
@@ -0,0 +1,13 @@
+from strands import Agent
+from strands.types.content import Messages
+
+
+def test_context_window_overflow():
+    messages: Messages = [
+        {"role": "user", "content": [{"text": "Too much text!" * 100000}]},
+        {"role": "assistant", "content": [{"text": "That was a lot of text!"}]},
+    ]
+
+    agent = Agent(messages=messages, load_tools_from_directory=False)
+    agent("Hi!")
+    assert len(agent.messages) == 2
diff --git a/tests-integ/test_function_tools.py b/tests-integ/test_function_tools.py
new file mode 100644
index 000000000..835dccf5d
--- /dev/null
+++ b/tests-integ/test_function_tools.py
@@ -0,0 +1,55 @@
+#!/usr/bin/env python3
+"""
+Test script for function-based tools
+"""
+
+import logging
+from typing import Optional
+
+from strands import Agent, tool
+
+logging.getLogger("strands").setLevel(logging.DEBUG)
+logging.basicConfig(format="%(levelname)s | %(name)s | %(message)s", handlers=[logging.StreamHandler()])
+
+
+@tool
+def word_counter(text: str) -> str:
+    """
+    Count words in text.
+
+    Args:
+        text: Text to analyze
+    """
+    count = len(text.split())
+    return f"Word count: {count}"
+
+
+@tool(name="count_chars", description="Count characters in text")
+def count_chars(text: str, include_spaces: Optional[bool] = True) -> str:
+    """
+    Count characters in text.
+
+    Args:
+        text: Text to analyze
+        include_spaces: Whether to include spaces in the count
+    """
+    if not include_spaces:
+        text = text.replace(" ", "")
+    return f"Character count: {len(text)}"
+
+
+# Initialize agent with function tools
+agent = Agent(tools=[word_counter, count_chars])
+
+print("\n===== Testing Direct Tool Access =====")
+# Use the tools directly
+word_result = agent.tool.word_counter(text="Hello world, this is a test")
+print(f"\nWord counter result: {word_result}")
+
+char_result = agent.tool.count_chars(text="Hello world!", include_spaces=False)
+print(f"\nCharacter counter result: {char_result}")
+
+print("\n===== Testing Natural Language Access =====")
+# Use through natural language
+nl_result = agent("Count the words in this sentence: 'The quick brown fox jumps over the lazy dog'")
+print(f"\nNL Result: {nl_result}")
diff --git a/tests-integ/test_hot_tool_reload_decorator.py b/tests-integ/test_hot_tool_reload_decorator.py
new file mode 100644
index 000000000..0a15a2be7
--- /dev/null
+++ b/tests-integ/test_hot_tool_reload_decorator.py
@@ -0,0 +1,143 @@
+"""
+Integration test for hot tool reloading functionality with the @tool decorator.
+
+This test verifies that the Strands Agent can automatically detect and load
+new tools created with the @tool decorator when they are added to a tools directory.
+"""
+
+import logging
+import os
+import time
+from pathlib import Path
+
+from strands import Agent
+
+logging.getLogger("strands").setLevel(logging.DEBUG)
+logging.basicConfig(format="%(levelname)s | %(name)s | %(message)s", handlers=[logging.StreamHandler()])
+
+
+def test_hot_reload_decorator():
+    """
+    Test that the Agent automatically loads tools created with @tool decorator
+    when added to the current working directory's tools folder.
+    """
+    # Set up the tools directory in current working directory
+    tools_dir = Path.cwd() / "tools"
+    os.makedirs(tools_dir, exist_ok=True)
+
+    # Tool path that will need cleanup
+    test_tool_path = tools_dir / "uppercase.py"
+
+    try:
+        # Create an Agent instance without any tools
+        agent = Agent()
+
+        # Create a test tool using @tool decorator
+        with open(test_tool_path, "w") as f:
+            f.write("""
+from strands import tool
+
+@tool
+def uppercase(text: str) -> str:
+    \"\"\"Convert text to uppercase.\"\"\"
+    return f"Input: {text}, Output: {text.upper()}"
+""")
+
+        # Wait for tool detection
+        time.sleep(3)
+
+        # Verify the tool was automatically loaded
+        assert "uppercase" in agent.tool_names, "Agent should have detected and loaded the uppercase tool"
+
+        # Test calling the dynamically loaded tool
+        result = agent.tool.uppercase(text="hello world")
+
+        # Check that the result is successful
+        assert result.get("status") == "success", "Tool call should be successful"
+
+        # Check the content of the response
+        content_list = result.get("content", [])
+        assert len(content_list) > 0, "Tool response should have content"
+
+        # Check that the expected message is in the content
+        text_content = next((item.get("text") for item in content_list if "text" in item), "")
+        assert "Input: hello world, Output: HELLO WORLD" in text_content
+
+    finally:
+        # Clean up - remove the test file
+        if test_tool_path.exists():
+            os.remove(test_tool_path)
+
+
+def test_hot_reload_decorator_update():
+    """
+    Test that the Agent detects updates to tools created with @tool decorator.
+    """
+    # Set up the tools directory in current working directory
+    tools_dir = Path.cwd() / "tools"
+    os.makedirs(tools_dir, exist_ok=True)
+
+    # Tool path that will need cleanup - make sure filename matches function name
+    test_tool_path = tools_dir / "greeting.py"
+
+    try:
+        # Create an Agent instance
+        agent = Agent()
+
+        # Create the initial version of the tool
+        with open(test_tool_path, "w") as f:
+            f.write("""
+from strands import tool
+
+@tool
+def greeting(name: str) -> str:
+    \"\"\"Generate a simple greeting.\"\"\"
+    return f"Hello, {name}!"
+""")
+
+        # Wait for tool detection
+        time.sleep(3)
+
+        # Verify the tool was loaded
+        assert "greeting" in agent.tool_names, "Agent should have detected and loaded the greeting tool"
+
+        # Test calling the tool
+        result1 = agent.tool.greeting(name="Strands")
+        text_content1 = next((item.get("text") for item in result1.get("content", []) if "text" in item), "")
+        assert "Hello, Strands!" in text_content1, "Tool should return simple greeting"
+
+        # Update the tool with new functionality
+        with open(test_tool_path, "w") as f:
+            f.write("""
+from strands import tool
+import datetime
+
+@tool
+def greeting(name: str, formal: bool = False) -> str:
+    \"\"\"Generate a greeting with optional formality.\"\"\"
+    current_hour = datetime.datetime.now().hour
+    time_of_day = "morning" if current_hour < 12 else "afternoon" if current_hour < 18 else "evening"
+
+    if formal:
+        return f"Good {time_of_day}, {name}. It's a pleasure to meet you."
+    else:
+        return f"Hey {name}! How's your {time_of_day} going?"
+""")
+
+        # Wait for hot reload to detect the change
+        time.sleep(3)
+
+        # Test calling the updated tool
+        result2 = agent.tool.greeting(name="Strands", formal=True)
+        text_content2 = next((item.get("text") for item in result2.get("content", []) if "text" in item), "")
+        assert "Good" in text_content2 and "Strands" in text_content2 and "pleasure to meet you" in text_content2
+
+        # Test with informal parameter
+        result3 = agent.tool.greeting(name="Strands", formal=False)
+        text_content3 = next((item.get("text") for item in result3.get("content", []) if "text" in item), "")
+        assert "Hey Strands!" in text_content3 and "going" in text_content3
+
+    finally:
+        # Clean up - remove the test file
+        if test_tool_path.exists():
+            os.remove(test_tool_path)
diff --git a/tests-integ/test_image.png b/tests-integ/test_image.png
new file mode 100644
index 000000000..9caac13be
Binary files /dev/null and b/tests-integ/test_image.png differ
diff --git a/tests-integ/test_mcp_client.py b/tests-integ/test_mcp_client.py
new file mode 100644
index 000000000..8b1dade33
--- /dev/null
+++ b/tests-integ/test_mcp_client.py
@@ -0,0 +1,130 @@
+import base64
+import os
+import threading
+import time
+from typing import List, Literal
+
+import pytest
+from mcp import StdioServerParameters, stdio_client
+from mcp.client.sse import sse_client
+from mcp.client.streamable_http import streamablehttp_client
+from mcp.types import ImageContent as MCPImageContent
+
+from strands import Agent
+from strands.tools.mcp.mcp_client import MCPClient
+from strands.tools.mcp.mcp_types import MCPTransport
+from strands.types.content import Message
+from strands.types.tools import ToolUse
+
+
+def start_calculator_server(transport: Literal["sse", "streamable-http"], port=int):
+    """
+    Initialize and start an MCP calculator server for integration testing.
+
+    This function creates a FastMCP server instance that provides a simple
+    calculator tool for performing addition operations. The server uses
+    Server-Sent Events (SSE) transport for communication, making it accessible
+    over HTTP.
+    """
+    from mcp.server import FastMCP
+
+    mcp = FastMCP("Calculator Server", port=port)
+
+    @mcp.tool(description="Calculator tool which performs calculations")
+    def calculator(x: int, y: int) -> int:
+        return x + y
+
+    @mcp.tool(description="Generates a custom image")
+    def generate_custom_image() -> MCPImageContent:
+        try:
+            with open("tests-integ/test_image.png", "rb") as image_file:
+                encoded_image = base64.b64encode(image_file.read())
+                return MCPImageContent(type="image", data=encoded_image, mimeType="image/png")
+        except Exception as e:
+            print("Error while generating custom image: {}".format(e))
+
+    mcp.run(transport=transport)
+
+
+def test_mcp_client():
+    """
+    Test should yield output similar to the following
+    {'role': 'user', 'content': [{'text': 'add 1 and 2, then echo the result back to me'}]}
+    {'role': 'assistant', 'content': [{'text': "I'll help you add 1 and 2 and then echo the result back to you.\n\nFirst, I'll calculate 1 + 2:"}, {'toolUse': {'toolUseId': 'tooluse_17ptaKUxQB20ySZxwgiI_w', 'name': 'calculator', 'input': {'x': 1, 'y': 2}}}]}
+    {'role': 'user', 'content': [{'toolResult': {'status': 'success', 'toolUseId': 'tooluse_17ptaKUxQB20ySZxwgiI_w', 'content': [{'text': '3'}]}}]}
+    {'role': 'assistant', 'content': [{'text': "\n\nNow I'll echo the result back to you:"}, {'toolUse': {'toolUseId': 'tooluse_GlOc5SN8TE6ti8jVZJMBOg', 'name': 'echo', 'input': {'to_echo': '3'}}}]}
+    {'role': 'user', 'content': [{'toolResult': {'status': 'success', 'toolUseId': 'tooluse_GlOc5SN8TE6ti8jVZJMBOg', 'content': [{'text': '3'}]}}]}
+    {'role': 'assistant', 'content': [{'text': '\n\nThe result of adding 1 and 2 is 3.'}]}
+    """  # noqa: E501
+
+    server_thread = threading.Thread(
+        target=start_calculator_server, kwargs={"transport": "sse", "port": 8000}, daemon=True
+    )
+    server_thread.start()
+    time.sleep(2)  # wait for server to startup completely
+
+    sse_mcp_client = MCPClient(lambda: sse_client("http://127.0.0.1:8000/sse"))
+    stdio_mcp_client = MCPClient(
+        lambda: stdio_client(StdioServerParameters(command="python", args=["tests-integ/echo_server.py"]))
+    )
+    with sse_mcp_client, stdio_mcp_client:
+        agent = Agent(tools=sse_mcp_client.list_tools_sync() + stdio_mcp_client.list_tools_sync())
+        agent("add 1 and 2, then echo the result back to me")
+
+        tool_use_content_blocks = _messages_to_content_blocks(agent.messages)
+        assert any([block["name"] == "echo" for block in tool_use_content_blocks])
+        assert any([block["name"] == "calculator" for block in tool_use_content_blocks])
+
+        image_prompt = """
+        Generate a custom image, then tell me if the image is red, blue, yellow, pink, orange, or green. 
+        RESPOND ONLY WITH THE COLOR
+        """
+        assert any(
+            [
+                "yellow".casefold() in block["text"].casefold()
+                for block in agent(image_prompt).message["content"]
+                if "text" in block
+            ]
+        )
+
+
+def test_can_reuse_mcp_client():
+    stdio_mcp_client = MCPClient(
+        lambda: stdio_client(StdioServerParameters(command="python", args=["tests-integ/echo_server.py"]))
+    )
+    with stdio_mcp_client:
+        stdio_mcp_client.list_tools_sync()
+        pass
+    with stdio_mcp_client:
+        agent = Agent(tools=stdio_mcp_client.list_tools_sync())
+        agent("echo the following to me DOG")
+
+        tool_use_content_blocks = _messages_to_content_blocks(agent.messages)
+        assert any([block["name"] == "echo" for block in tool_use_content_blocks])
+
+
+@pytest.mark.skipif(
+    condition=os.environ.get("GITHUB_ACTIONS") == "true",
+    reason="streamable transport is failing in GitHub actions, debugging if linux compatibility issue",
+)
+def test_streamable_http_mcp_client():
+    server_thread = threading.Thread(
+        target=start_calculator_server, kwargs={"transport": "streamable-http", "port": 8001}, daemon=True
+    )
+    server_thread.start()
+    time.sleep(2)  # wait for server to startup completely
+
+    def transport_callback() -> MCPTransport:
+        return streamablehttp_client(url="http://127.0.0.1:8001/mcp")
+
+    streamable_http_client = MCPClient(transport_callback)
+    with streamable_http_client:
+        agent = Agent(tools=streamable_http_client.list_tools_sync())
+        agent("add 1 and 2 using a calculator")
+
+        tool_use_content_blocks = _messages_to_content_blocks(agent.messages)
+        assert any([block["name"] == "calculator" for block in tool_use_content_blocks])
+
+
+def _messages_to_content_blocks(messages: List[Message]) -> List[ToolUse]:
+    return [block["toolUse"] for message in messages for block in message["content"] if "toolUse" in block]
diff --git a/tests-integ/test_model_anthropic.py b/tests-integ/test_model_anthropic.py
new file mode 100644
index 000000000..50033f8f7
--- /dev/null
+++ b/tests-integ/test_model_anthropic.py
@@ -0,0 +1,63 @@
+import os
+
+import pytest
+from pydantic import BaseModel
+
+import strands
+from strands import Agent
+from strands.models.anthropic import AnthropicModel
+
+
+@pytest.fixture
+def model():
+    return AnthropicModel(
+        client_args={
+            "api_key": os.getenv("ANTHROPIC_API_KEY"),
+        },
+        model_id="claude-3-7-sonnet-20250219",
+        max_tokens=512,
+    )
+
+
+@pytest.fixture
+def tools():
+    @strands.tool
+    def tool_time() -> str:
+        return "12:00"
+
+    @strands.tool
+    def tool_weather() -> str:
+        return "sunny"
+
+    return [tool_time, tool_weather]
+
+
+@pytest.fixture
+def system_prompt():
+    return "You are an AI assistant."
+
+
+@pytest.fixture
+def agent(model, tools, system_prompt):
+    return Agent(model=model, tools=tools, system_prompt=system_prompt)
+
+
+@pytest.mark.skipif("ANTHROPIC_API_KEY" not in os.environ, reason="ANTHROPIC_API_KEY environment variable missing")
+def test_agent(agent):
+    result = agent("What is the time and weather in New York?")
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
+
+
+@pytest.mark.skipif("ANTHROPIC_API_KEY" not in os.environ, reason="ANTHROPIC_API_KEY environment variable missing")
+def test_structured_output(model):
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent = Agent(model=model)
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
diff --git a/tests-integ/test_model_bedrock.py b/tests-integ/test_model_bedrock.py
new file mode 100644
index 000000000..120f4036b
--- /dev/null
+++ b/tests-integ/test_model_bedrock.py
@@ -0,0 +1,153 @@
+import pytest
+from pydantic import BaseModel
+
+import strands
+from strands import Agent
+from strands.models import BedrockModel
+
+
+@pytest.fixture
+def system_prompt():
+    return "You are an AI assistant that uses & instead of ."
+
+
+@pytest.fixture
+def streaming_model():
+    return BedrockModel(
+        model_id="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
+        streaming=True,
+    )
+
+
+@pytest.fixture
+def non_streaming_model():
+    return BedrockModel(
+        model_id="us.meta.llama3-2-90b-instruct-v1:0",
+        streaming=False,
+    )
+
+
+@pytest.fixture
+def streaming_agent(streaming_model, system_prompt):
+    return Agent(model=streaming_model, system_prompt=system_prompt, load_tools_from_directory=False)
+
+
+@pytest.fixture
+def non_streaming_agent(non_streaming_model, system_prompt):
+    return Agent(model=non_streaming_model, system_prompt=system_prompt, load_tools_from_directory=False)
+
+
+def test_streaming_agent(streaming_agent):
+    """Test agent with streaming model."""
+    result = streaming_agent("Hello!")
+
+    assert len(str(result)) > 0
+
+
+def test_non_streaming_agent(non_streaming_agent):
+    """Test agent with non-streaming model."""
+    result = non_streaming_agent("Hello!")
+
+    assert len(str(result)) > 0
+
+
+@pytest.mark.asyncio
+async def test_streaming_model_events(streaming_model, alist):
+    """Test streaming model events."""
+    messages = [{"role": "user", "content": [{"text": "Hello"}]}]
+
+    # Call converse and collect events
+    events = await alist(streaming_model.converse(messages))
+
+    # Verify basic structure of events
+    assert any("messageStart" in event for event in events)
+    assert any("contentBlockDelta" in event for event in events)
+    assert any("messageStop" in event for event in events)
+
+
+@pytest.mark.asyncio
+async def test_non_streaming_model_events(non_streaming_model, alist):
+    """Test non-streaming model events."""
+    messages = [{"role": "user", "content": [{"text": "Hello"}]}]
+
+    # Call converse and collect events
+    events = await alist(non_streaming_model.converse(messages))
+
+    # Verify basic structure of events
+    assert any("messageStart" in event for event in events)
+    assert any("contentBlockDelta" in event for event in events)
+    assert any("messageStop" in event for event in events)
+
+
+def test_tool_use_streaming(streaming_model):
+    """Test tool use with streaming model."""
+
+    tool_was_called = False
+
+    @strands.tool
+    def calculator(expression: str) -> float:
+        """Calculate the result of a mathematical expression."""
+
+        nonlocal tool_was_called
+        tool_was_called = True
+        return eval(expression)
+
+    agent = Agent(model=streaming_model, tools=[calculator], load_tools_from_directory=False)
+    result = agent("What is 123 + 456?")
+
+    # Print the full message content for debugging
+    print("\nFull message content:")
+    import json
+
+    print(json.dumps(result.message["content"], indent=2))
+
+    assert tool_was_called
+
+
+def test_tool_use_non_streaming(non_streaming_model):
+    """Test tool use with non-streaming model."""
+
+    tool_was_called = False
+
+    @strands.tool
+    def calculator(expression: str) -> float:
+        """Calculate the result of a mathematical expression."""
+
+        nonlocal tool_was_called
+        tool_was_called = True
+        return eval(expression)
+
+    agent = Agent(model=non_streaming_model, tools=[calculator], load_tools_from_directory=False)
+    agent("What is 123 + 456?")
+
+    assert tool_was_called
+
+
+def test_structured_output_streaming(streaming_model):
+    """Test structured output with streaming model."""
+
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent = Agent(model=streaming_model)
+
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
+
+
+def test_structured_output_non_streaming(non_streaming_model):
+    """Test structured output with non-streaming model."""
+
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent = Agent(model=non_streaming_model)
+
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
diff --git a/tests-integ/test_model_litellm.py b/tests-integ/test_model_litellm.py
new file mode 100644
index 000000000..01a3e1211
--- /dev/null
+++ b/tests-integ/test_model_litellm.py
@@ -0,0 +1,49 @@
+import pytest
+from pydantic import BaseModel
+
+import strands
+from strands import Agent
+from strands.models.litellm import LiteLLMModel
+
+
+@pytest.fixture
+def model():
+    return LiteLLMModel(model_id="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0")
+
+
+@pytest.fixture
+def tools():
+    @strands.tool
+    def tool_time() -> str:
+        return "12:00"
+
+    @strands.tool
+    def tool_weather() -> str:
+        return "sunny"
+
+    return [tool_time, tool_weather]
+
+
+@pytest.fixture
+def agent(model, tools):
+    return Agent(model=model, tools=tools)
+
+
+def test_agent(agent):
+    result = agent("What is the time and weather in New York?")
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
+
+
+def test_structured_output(model):
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent_no_tools = Agent(model=model)
+
+    result = agent_no_tools.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
diff --git a/tests-integ/test_model_llamaapi.py b/tests-integ/test_model_llamaapi.py
new file mode 100644
index 000000000..dad6919e2
--- /dev/null
+++ b/tests-integ/test_model_llamaapi.py
@@ -0,0 +1,47 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates
+import os
+
+import pytest
+
+import strands
+from strands import Agent
+from strands.models.llamaapi import LlamaAPIModel
+
+
+@pytest.fixture
+def model():
+    return LlamaAPIModel(
+        model_id="Llama-4-Maverick-17B-128E-Instruct-FP8",
+        client_args={
+            "api_key": os.getenv("LLAMA_API_KEY"),
+        },
+    )
+
+
+@pytest.fixture
+def tools():
+    @strands.tool
+    def tool_time() -> str:
+        return "12:00"
+
+    @strands.tool
+    def tool_weather() -> str:
+        return "sunny"
+
+    return [tool_time, tool_weather]
+
+
+@pytest.fixture
+def agent(model, tools):
+    return Agent(model=model, tools=tools)
+
+
+@pytest.mark.skipif(
+    "LLAMA_API_KEY" not in os.environ,
+    reason="LLAMA_API_KEY environment variable missing",
+)
+def test_agent(agent):
+    result = agent("What is the time and weather in New York?")
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
diff --git a/tests-integ/test_model_mistral.py b/tests-integ/test_model_mistral.py
new file mode 100644
index 000000000..f2664f7fd
--- /dev/null
+++ b/tests-integ/test_model_mistral.py
@@ -0,0 +1,157 @@
+import os
+
+import pytest
+from pydantic import BaseModel
+
+import strands
+from strands import Agent
+from strands.models.mistral import MistralModel
+
+
+@pytest.fixture
+def streaming_model():
+    return MistralModel(
+        model_id="mistral-medium-latest",
+        api_key=os.getenv("MISTRAL_API_KEY"),
+        stream=True,
+        temperature=0.7,
+        max_tokens=1000,
+        top_p=0.9,
+    )
+
+
+@pytest.fixture
+def non_streaming_model():
+    return MistralModel(
+        model_id="mistral-medium-latest",
+        api_key=os.getenv("MISTRAL_API_KEY"),
+        stream=False,
+        temperature=0.7,
+        max_tokens=1000,
+        top_p=0.9,
+    )
+
+
+@pytest.fixture
+def system_prompt():
+    return "You are an AI assistant that provides helpful and accurate information."
+
+
+@pytest.fixture
+def calculator_tool():
+    @strands.tool
+    def calculator(expression: str) -> float:
+        """Calculate the result of a mathematical expression."""
+        return eval(expression)
+
+    return calculator
+
+
+@pytest.fixture
+def weather_tools():
+    @strands.tool
+    def tool_time() -> str:
+        """Get the current time."""
+        return "12:00"
+
+    @strands.tool
+    def tool_weather() -> str:
+        """Get the current weather."""
+        return "sunny"
+
+    return [tool_time, tool_weather]
+
+
+@pytest.fixture
+def streaming_agent(streaming_model):
+    return Agent(model=streaming_model)
+
+
+@pytest.fixture
+def non_streaming_agent(non_streaming_model):
+    return Agent(model=non_streaming_model)
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_streaming_agent_basic(streaming_agent):
+    """Test basic streaming agent functionality."""
+    result = streaming_agent("Tell me about Agentic AI in one sentence.")
+
+    assert len(str(result)) > 0
+    assert hasattr(result, "message")
+    assert "content" in result.message
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_non_streaming_agent_basic(non_streaming_agent):
+    """Test basic non-streaming agent functionality."""
+    result = non_streaming_agent("Tell me about Agentic AI in one sentence.")
+
+    assert len(str(result)) > 0
+    assert hasattr(result, "message")
+    assert "content" in result.message
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_tool_use_streaming(streaming_model):
+    """Test tool use with streaming model."""
+
+    @strands.tool
+    def calculator(expression: str) -> float:
+        """Calculate the result of a mathematical expression."""
+        return eval(expression)
+
+    agent = Agent(model=streaming_model, tools=[calculator])
+    result = agent("What is the square root of 1764")
+
+    # Verify the result contains the calculation
+    text_content = str(result).lower()
+    assert "42" in text_content
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_tool_use_non_streaming(non_streaming_model):
+    """Test tool use with non-streaming model."""
+
+    @strands.tool
+    def calculator(expression: str) -> float:
+        """Calculate the result of a mathematical expression."""
+        return eval(expression)
+
+    agent = Agent(model=non_streaming_model, tools=[calculator], load_tools_from_directory=False)
+    result = agent("What is the square root of 1764")
+
+    text_content = str(result).lower()
+    assert "42" in text_content
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_structured_output_streaming(streaming_model):
+    """Test structured output with streaming model."""
+
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent = Agent(model=streaming_model)
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
+
+
+@pytest.mark.skipif("MISTRAL_API_KEY" not in os.environ, reason="MISTRAL_API_KEY environment variable missing")
+def test_structured_output_non_streaming(non_streaming_model):
+    """Test structured output with non-streaming model."""
+
+    class Weather(BaseModel):
+        time: str
+        weather: str
+
+    agent = Agent(model=non_streaming_model)
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
diff --git a/tests-integ/test_model_ollama.py b/tests-integ/test_model_ollama.py
new file mode 100644
index 000000000..38b46821d
--- /dev/null
+++ b/tests-integ/test_model_ollama.py
@@ -0,0 +1,47 @@
+import pytest
+import requests
+from pydantic import BaseModel
+
+from strands import Agent
+from strands.models.ollama import OllamaModel
+
+
+def is_server_available() -> bool:
+    try:
+        return requests.get("http://localhost:11434").ok
+    except requests.exceptions.ConnectionError:
+        return False
+
+
+@pytest.fixture
+def model():
+    return OllamaModel(host="http://localhost:11434", model_id="llama3.3:70b")
+
+
+@pytest.fixture
+def agent(model):
+    return Agent(model=model)
+
+
+@pytest.mark.skipif(not is_server_available(), reason="Local Ollama endpoint not available at localhost:11434")
+def test_agent(agent):
+    result = agent("Say 'hello world' with no other text")
+    assert isinstance(result.message["content"][0]["text"], str)
+
+
+@pytest.mark.skipif(not is_server_available(), reason="Local Ollama endpoint not available at localhost:11434")
+def test_structured_output(agent):
+    class Weather(BaseModel):
+        """Extract the time and weather.
+
+        Time format: HH:MM
+        Weather: sunny, cloudy, rainy, etc.
+        """
+
+        time: str
+        weather: str
+
+    result = agent.structured_output(Weather, "The time is 12:00 and the weather is sunny")
+    assert isinstance(result, Weather)
+    assert result.time == "12:00"
+    assert result.weather == "sunny"
diff --git a/tests-integ/test_model_openai.py b/tests-integ/test_model_openai.py
new file mode 100644
index 000000000..e0dfcb34b
--- /dev/null
+++ b/tests-integ/test_model_openai.py
@@ -0,0 +1,121 @@
+import os
+
+import pytest
+from pydantic import BaseModel
+
+import strands
+from strands import Agent, tool
+
+if "OPENAI_API_KEY" not in os.environ:
+    pytest.skip(allow_module_level=True, reason="OPENAI_API_KEY environment variable missing")
+
+from strands.models.openai import OpenAIModel
+
+
+@pytest.fixture(scope="module")
+def model():
+    return OpenAIModel(
+        model_id="gpt-4o",
+        client_args={
+            "api_key": os.getenv("OPENAI_API_KEY"),
+        },
+    )
+
+
+@pytest.fixture(scope="module")
+def tools():
+    @strands.tool
+    def tool_time() -> str:
+        return "12:00"
+
+    @strands.tool
+    def tool_weather() -> str:
+        return "sunny"
+
+    return [tool_time, tool_weather]
+
+
+@pytest.fixture(scope="module")
+def agent(model, tools):
+    return Agent(model=model, tools=tools)
+
+
+@pytest.fixture(scope="module")
+def weather():
+    class Weather(BaseModel):
+        """Extracts the time and weather from the user's message with the exact strings."""
+
+        time: str
+        weather: str
+
+    return Weather(time="12:00", weather="sunny")
+
+
+@pytest.fixture(scope="module")
+def test_image_path(request):
+    return request.config.rootpath / "tests-integ" / "test_image.png"
+
+
+def test_agent_invoke(agent):
+    result = agent("What is the time and weather in New York?")
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
+
+
+@pytest.mark.asyncio
+async def test_agent_invoke_async(agent):
+    result = await agent.invoke_async("What is the time and weather in New York?")
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
+
+
+@pytest.mark.asyncio
+async def test_agent_stream_async(agent):
+    stream = agent.stream_async("What is the time and weather in New York?")
+    async for event in stream:
+        _ = event
+
+    result = event["result"]
+    text = result.message["content"][0]["text"].lower()
+
+    assert all(string in text for string in ["12:00", "sunny"])
+
+
+def test_agent_structured_output(agent, weather):
+    tru_weather = agent.structured_output(type(weather), "The time is 12:00 and the weather is sunny")
+    exp_weather = weather
+    assert tru_weather == exp_weather
+
+
+@pytest.mark.asyncio
+async def test_agent_structured_output_async(agent, weather):
+    tru_weather = await agent.structured_output_async(type(weather), "The time is 12:00 and the weather is sunny")
+    exp_weather = weather
+    assert tru_weather == exp_weather
+
+
+def test_tool_returning_images(model, test_image_path):
+    @tool
+    def tool_with_image_return():
+        with open(test_image_path, "rb") as image_file:
+            encoded_image = image_file.read()
+
+        return {
+            "status": "success",
+            "content": [
+                {
+                    "image": {
+                        "format": "png",
+                        "source": {"bytes": encoded_image},
+                    }
+                },
+            ],
+        }
+
+    agent = Agent(model, tools=[tool_with_image_return])
+    # NOTE - this currently fails with: "Invalid 'messages[3]'. Image URLs are only allowed for messages with role
+    # 'user', but this message with role 'tool' contains an image URL."
+    # See https://github.com/strands-agents/sdk-python/issues/320 for additional details
+    agent("Run the the tool and analyze the image")
diff --git a/tests-integ/test_stream_agent.py b/tests-integ/test_stream_agent.py
new file mode 100644
index 000000000..01f203390
--- /dev/null
+++ b/tests-integ/test_stream_agent.py
@@ -0,0 +1,70 @@
+"""
+Test script for Strands' custom callback handler functionality.
+Demonstrates different patterns of callback handling and processing.
+"""
+
+import logging
+
+from strands import Agent
+
+logging.getLogger("strands").setLevel(logging.DEBUG)
+logging.basicConfig(format="%(levelname)s | %(name)s | %(message)s", handlers=[logging.StreamHandler()])
+
+
+class ToolCountingCallbackHandler:
+    def __init__(self):
+        self.tool_count = 0
+        self.message_count = 0
+
+    def callback_handler(self, **kwargs) -> None:
+        """
+        Custom callback handler that processes and displays different types of events.
+
+        Args:
+            **kwargs: Callback event data including:
+                - data: Regular output
+                - complete: Completion status
+                - message: Message processing
+                - current_tool_use: Tool execution
+        """
+        # Extract event data
+        data = kwargs.get("data", "")
+        complete = kwargs.get("complete", False)
+        message = kwargs.get("message", {})
+        current_tool_use = kwargs.get("current_tool_use", {})
+
+        # Handle regular data output
+        if data:
+            print(f"🔄 Data: {data}")
+
+        # Handle tool execution events
+        if current_tool_use:
+            self.tool_count += 1
+            tool_name = current_tool_use.get("name", "")
+            tool_input = current_tool_use.get("input", {})
+            print(f"🛠️ Tool Execution #{self.tool_count}\nTool: {tool_name}\nInput: {tool_input}")
+
+        # Handle message processing
+        if message:
+            self.message_count += 1
+            print(f"📝 Message #{self.message_count}")
+
+        # Handle completion
+        if complete:
+            self.console.print("✨ Callback Complete", style="bold green")
+
+
+def test_basic_interaction():
+    """Test basic AGI interaction with custom callback handler."""
+    print("\nTesting Basic Interaction")
+
+    # Initialize agent with custom handler
+    agent = Agent(
+        callback_handler=ToolCountingCallbackHandler().callback_handler,
+        load_tools_from_directory=False,
+    )
+
+    # Simple prompt to test callbacking
+    agent("Tell me a short joke from your general knowledge")
+
+    print("\nBasic Interaction Complete")
diff --git a/tests-integ/test_summarizing_conversation_manager_integration.py b/tests-integ/test_summarizing_conversation_manager_integration.py
new file mode 100644
index 000000000..5dcf49443
--- /dev/null
+++ b/tests-integ/test_summarizing_conversation_manager_integration.py
@@ -0,0 +1,374 @@
+"""Integration tests for SummarizingConversationManager with actual AI models.
+
+These tests validate the end-to-end functionality of the SummarizingConversationManager
+by testing with real AI models and API calls. They ensure that:
+
+1. **Real summarization** - Tests that actual model-generated summaries work correctly
+2. **Context overflow handling** - Validates real context overflow scenarios and recovery
+3. **Tool preservation** - Ensures ToolUse/ToolResult pairs survive real summarization
+4. **Message structure** - Verifies real model outputs maintain proper message structure
+5. **Agent integration** - Tests that conversation managers work with real Agent workflows
+
+These tests require API keys (`ANTHROPIC_API_KEY`) and make real API calls, so they should be run sparingly
+and may be skipped in CI environments without proper credentials.
+"""
+
+import os
+
+import pytest
+
+import strands
+from strands import Agent
+from strands.agent.conversation_manager import SummarizingConversationManager
+from strands.models.anthropic import AnthropicModel
+
+
+@pytest.fixture
+def model():
+    """Real Anthropic model for integration testing."""
+    return AnthropicModel(
+        client_args={
+            "api_key": os.getenv("ANTHROPIC_API_KEY"),
+        },
+        model_id="claude-3-haiku-20240307",  # Using Haiku for faster/cheaper tests
+        max_tokens=1024,
+    )
+
+
+@pytest.fixture
+def summarization_model():
+    """Separate model instance for summarization to test dedicated agent functionality."""
+    return AnthropicModel(
+        client_args={
+            "api_key": os.getenv("ANTHROPIC_API_KEY"),
+        },
+        model_id="claude-3-haiku-20240307",
+        max_tokens=512,
+    )
+
+
+@pytest.fixture
+def tools():
+    """Real tools for testing tool preservation during summarization."""
+
+    @strands.tool
+    def get_current_time() -> str:
+        """Get the current time."""
+        return "2024-01-15 14:30:00"
+
+    @strands.tool
+    def get_weather(city: str) -> str:
+        """Get weather information for a city."""
+        return f"The weather in {city} is sunny and 72°F"
+
+    @strands.tool
+    def calculate_sum(a: int, b: int) -> int:
+        """Calculate the sum of two numbers."""
+        return a + b
+
+    return [get_current_time, get_weather, calculate_sum]
+
+
+@pytest.mark.skipif("ANTHROPIC_API_KEY" not in os.environ, reason="ANTHROPIC_API_KEY environment variable missing")
+def test_summarization_with_context_overflow(model):
+    """Test that summarization works when context overflow occurs."""
+    # Mock conversation data to avoid API calls
+    greeting_response = """
+    Hello! I'm here to help you test your conversation manager. What specifically would you like 
+    me to do as part of this test? I can respond to different types of prompts, maintain context 
+    throughout our conversation, or demonstrate other capabilities of the AI assistant. Just let 
+    me know what aspects you'd like to evaluate.
+    """.strip()
+
+    computer_history_response = """
+    # History of Computers
+
+    The history of computers spans many centuries, evolving from simple calculating tools to 
+    the powerful machines we use today.
+
+    ## Early Computing Devices
+    - **Ancient abacus** (3000 BCE): One of the earliest computing devices used for arithmetic calculations
+    - **Pascaline** (1642): Mechanical calculator invented by Blaise Pascal
+    - **Difference Engine** (1822): Designed by Charles Babbage to compute polynomial functions
+    - **Analytical Engine**: Babbage's more ambitious design, considered the first general-purpose computer concept
+    - **Hollerith's Tabulating Machine** (1890s): Used punch cards to process data for the US Census
+
+    ## Early Electronic Computers
+    - **ENIAC** (1945): First general-purpose electronic computer, weighed 30 tons
+    - **EDVAC** (1949): Introduced the stored program concept
+    - **UNIVAC I** (1951): First commercial computer in the United States
+    """.strip()
+
+    first_computers_response = """
+    # The First Computers
+
+    Early computers were dramatically different from today's machines in almost every aspect:
+
+    ## Physical Characteristics
+    - **Enormous size**: Room-filling or even building-filling machines
+    - **ENIAC** (1945) weighed about 30 tons, occupied 1,800 square feet
+    - Consisted of large metal frames or cabinets filled with components
+    - Required special cooling systems due to excessive heat generation
+
+    ## Technology and Components
+    - **Vacuum tubes**: Thousands of fragile glass tubes served as switches and amplifiers
+    - ENIAC contained over 17,000 vacuum tubes
+    - Generated tremendous heat and frequently failed
+    - **Memory**: Limited storage using delay lines, cathode ray tubes, or magnetic drums
+    """.strip()
+
+    messages = [
+        {"role": "user", "content": [{"text": "Hello, I'm testing a conversation manager."}]},
+        {"role": "assistant", "content": [{"text": greeting_response}]},
+        {"role": "user", "content": [{"text": "Can you tell me about the history of computers?"}]},
+        {"role": "assistant", "content": [{"text": computer_history_response}]},
+        {"role": "user", "content": [{"text": "What were the first computers like?"}]},
+        {"role": "assistant", "content": [{"text": first_computers_response}]},
+    ]
+
+    # Create agent with very aggressive summarization settings and pre-built conversation
+    agent = Agent(
+        model=model,
+        conversation_manager=SummarizingConversationManager(
+            summary_ratio=0.5,  # Summarize 50% of messages
+            preserve_recent_messages=2,  # Keep only 2 recent messages
+        ),
+        load_tools_from_directory=False,
+        messages=messages,
+    )
+
+    # Should have the pre-built conversation history
+    initial_message_count = len(agent.messages)
+    assert initial_message_count == 6  # 3 user + 3 assistant messages
+
+    # Store the last 2 messages before summarization to verify they're preserved
+    messages_before_summary = agent.messages[-2:].copy()
+
+    # Now manually trigger context reduction to test summarization
+    agent.conversation_manager.reduce_context(agent)
+
+    # Verify summarization occurred
+    assert len(agent.messages) < initial_message_count
+    # Should have: 1 summary + remaining messages
+    # With 6 messages, summary_ratio=0.5, preserve_recent_messages=2:
+    # messages_to_summarize = min(6 * 0.5, 6 - 2) = min(3, 4) = 3
+    # So we summarize 3 messages, leaving 3 remaining + 1 summary = 4 total
+    expected_total_messages = 4
+    assert len(agent.messages) == expected_total_messages
+
+    # First message should be the summary (assistant message)
+    summary_message = agent.messages[0]
+    assert summary_message["role"] == "assistant"
+    assert len(summary_message["content"]) > 0
+
+    # Verify the summary contains actual text content
+    summary_content = None
+    for content_block in summary_message["content"]:
+        if "text" in content_block:
+            summary_content = content_block["text"]
+            break
+
+    assert summary_content is not None
+    assert len(summary_content) > 50  # Should be a substantial summary
+
+    # Recent messages should be preserved - verify they're exactly the same
+    recent_messages = agent.messages[-2:]  # Last 2 messages should be preserved
+    assert len(recent_messages) == 2
+    assert recent_messages == messages_before_summary, "The last 2 messages should be preserved exactly as they were"
+
+    # Agent should still be functional after summarization
+    post_summary_result = agent("That's very interesting, thank you!")
+    assert post_summary_result.message["role"] == "assistant"
+
+
+@pytest.mark.skipif("ANTHROPIC_API_KEY" not in os.environ, reason="ANTHROPIC_API_KEY environment variable missing")
+def test_tool_preservation_during_summarization(model, tools):
+    """Test that ToolUse/ToolResult pairs are preserved during summarization."""
+    agent = Agent(
+        model=model,
+        tools=tools,
+        conversation_manager=SummarizingConversationManager(
+            summary_ratio=0.6,  # Aggressive summarization
+            preserve_recent_messages=3,
+        ),
+        load_tools_from_directory=False,
+    )
+
+    # Mock conversation with tool usage to avoid API calls and speed up tests
+    greeting_text = """
+    Hello! I'd be happy to help you with calculations. I have access to tools that can 
+    help with math, time, and weather information. What would you like me to calculate for you?
+    """.strip()
+
+    weather_response = "The weather in San Francisco is sunny and 72°F. Perfect weather for being outside!"
+
+    tool_conversation_data = [
+        # Initial greeting exchange
+        {"role": "user", "content": [{"text": "Hello, can you help me with some calculations?"}]},
+        {"role": "assistant", "content": [{"text": greeting_text}]},
+        # Time query with tool use/result pair
+        {"role": "user", "content": [{"text": "What's the current time?"}]},
+        {
+            "role": "assistant",
+            "content": [{"toolUse": {"toolUseId": "time_001", "name": "get_current_time", "input": {}}}],
+        },
+        {
+            "role": "user",
+            "content": [
+                {
+                    "toolResult": {
+                        "toolUseId": "time_001",
+                        "content": [{"text": "2024-01-15 14:30:00"}],
+                        "status": "success",
+                    }
+                }
+            ],
+        },
+        {"role": "assistant", "content": [{"text": "The current time is 2024-01-15 14:30:00."}]},
+        # Math calculation with tool use/result pair
+        {"role": "user", "content": [{"text": "What's 25 + 37?"}]},
+        {
+            "role": "assistant",
+            "content": [{"toolUse": {"toolUseId": "calc_001", "name": "calculate_sum", "input": {"a": 25, "b": 37}}}],
+        },
+        {
+            "role": "user",
+            "content": [{"toolResult": {"toolUseId": "calc_001", "content": [{"text": "62"}], "status": "success"}}],
+        },
+        {"role": "assistant", "content": [{"text": "25 + 37 = 62"}]},
+        # Weather query with tool use/result pair
+        {"role": "user", "content": [{"text": "What's the weather like in San Francisco?"}]},
+        {
+            "role": "assistant",
+            "content": [
+                {"toolUse": {"toolUseId": "weather_001", "name": "get_weather", "input": {"city": "San Francisco"}}}
+            ],
+        },
+        {
+            "role": "user",
+            "content": [
+                {
+                    "toolResult": {
+                        "toolUseId": "weather_001",
+                        "content": [{"text": "The weather in San Francisco is sunny and 72°F"}],
+                        "status": "success",
+                    }
+                }
+            ],
+        },
+        {"role": "assistant", "content": [{"text": weather_response}]},
+    ]
+
+    # Add all the mocked conversation messages to avoid real API calls
+    agent.messages.extend(tool_conversation_data)
+
+    # Force summarization
+    agent.conversation_manager.reduce_context(agent)
+
+    # Verify tool pairs are still balanced after summarization
+    post_summary_tool_use_count = 0
+    post_summary_tool_result_count = 0
+
+    for message in agent.messages:
+        for content in message.get("content", []):
+            if "toolUse" in content:
+                post_summary_tool_use_count += 1
+            if "toolResult" in content:
+                post_summary_tool_result_count += 1
+
+    # Tool uses and results should be balanced (no orphaned tools)
+    assert post_summary_tool_use_count == post_summary_tool_result_count, (
+        "Tool use and tool result counts should be balanced after summarization"
+    )
+
+    # Agent should still be able to use tools after summarization
+    agent("Calculate 15 + 28 for me.")
+
+    # Should have triggered the calculate_sum tool
+    found_calculation = False
+    for message in agent.messages[-2:]:  # Check recent messages
+        for content in message.get("content", []):
+            if "toolResult" in content and "43" in str(content):  # 15 + 28 = 43
+                found_calculation = True
+                break
+
+    assert found_calculation, "Tool should still work after summarization"
+
+
+@pytest.mark.skipif("ANTHROPIC_API_KEY" not in os.environ, reason="ANTHROPIC_API_KEY environment variable missing")
+def test_dedicated_summarization_agent(model, summarization_model):
+    """Test that a dedicated summarization agent works correctly."""
+    # Create a dedicated summarization agent
+    summarization_agent = Agent(
+        model=summarization_model,
+        system_prompt="You are a conversation summarizer. Create concise, structured summaries.",
+        load_tools_from_directory=False,
+    )
+
+    # Create main agent with dedicated summarization agent
+    agent = Agent(
+        model=model,
+        conversation_manager=SummarizingConversationManager(
+            summary_ratio=0.5,
+            preserve_recent_messages=2,
+            summarization_agent=summarization_agent,
+        ),
+        load_tools_from_directory=False,
+    )
+
+    # Mock conversation data for space exploration topic
+    space_intro_response = """
+    Space exploration has been one of humanity's greatest achievements, beginning with early 
+    satellite launches in the 1950s and progressing to human spaceflight, moon landings, and now 
+    commercial space ventures.
+    """.strip()
+
+    space_milestones_response = """
+    Key milestones include Sputnik 1 (1957), Yuri Gagarin's first human spaceflight (1961), 
+    the Apollo 11 moon landing (1969), the Space Shuttle program, and the International Space 
+    Station construction.
+    """.strip()
+
+    apollo_missions_response = """
+    The Apollo program was NASA's lunar exploration program from 1961-1975. Apollo 11 achieved 
+    the first moon landing in 1969 with Neil Armstrong and Buzz Aldrin, followed by five more 
+    successful lunar missions through Apollo 17.
+    """.strip()
+
+    spacex_response = """
+    SpaceX has revolutionized space travel with reusable rockets, reducing launch costs dramatically. 
+    They've achieved crew transportation to the ISS, satellite deployments, and are developing 
+    Starship for Mars missions.
+    """.strip()
+
+    conversation_pairs = [
+        ("I'm interested in learning about space exploration.", space_intro_response),
+        ("What were the key milestones in space exploration?", space_milestones_response),
+        ("Tell me about the Apollo missions.", apollo_missions_response),
+        ("What about modern space exploration with SpaceX?", spacex_response),
+    ]
+
+    # Manually build the conversation history to avoid real API calls
+    for user_input, assistant_response in conversation_pairs:
+        agent.messages.append({"role": "user", "content": [{"text": user_input}]})
+        agent.messages.append({"role": "assistant", "content": [{"text": assistant_response}]})
+
+    # Force summarization
+    original_length = len(agent.messages)
+    agent.conversation_manager.reduce_context(agent)
+
+    # Verify summarization occurred
+    assert len(agent.messages) < original_length
+
+    # Get the summary message
+    summary_message = agent.messages[0]
+    assert summary_message["role"] == "assistant"
+
+    # Extract summary text
+    summary_text = None
+    for content in summary_message["content"]:
+        if "text" in content:
+            summary_text = content["text"]
+            break
+
+    assert summary_text
diff --git a/tests/fixtures/mock_hook_provider.py b/tests/fixtures/mock_hook_provider.py
index 7214ac490..7810c9ba0 100644
--- a/tests/fixtures/mock_hook_provider.py
+++ b/tests/fixtures/mock_hook_provider.py
@@ -1,4 +1,5 @@
-from typing import Iterator, Tuple, Type
+from collections import deque
+from typing import Type
 
 from strands.experimental.hooks import HookEvent, HookProvider, HookRegistry
 
@@ -8,12 +9,12 @@ def __init__(self, event_types: list[Type]):
         self.events_received = []
         self.events_types = event_types
 
-    def get_events(self) -> Tuple[int, Iterator[HookEvent]]:
-        return len(self.events_received), iter(self.events_received)
+    def get_events(self) -> deque[HookEvent]:
+        return deque(self.events_received)
 
     def register_hooks(self, registry: HookRegistry) -> None:
         for event_type in self.events_types:
-            registry.add_callback(event_type, self.add_event)
+            registry.add_callback(event_type, self._add_event)
 
-    def add_event(self, event: HookEvent) -> None:
+    def _add_event(self, event: HookEvent) -> None:
         self.events_received.append(event)
diff --git a/tests/strands/multiagent/__init__.py b/tests/multiagent/__init__.py
similarity index 100%
rename from tests/strands/multiagent/__init__.py
rename to tests/multiagent/__init__.py
diff --git a/tests/strands/multiagent/a2a/__init__.py b/tests/multiagent/a2a/__init__.py
similarity index 100%
rename from tests/strands/multiagent/a2a/__init__.py
rename to tests/multiagent/a2a/__init__.py
diff --git a/tests/strands/multiagent/a2a/conftest.py b/tests/multiagent/a2a/conftest.py
similarity index 90%
rename from tests/strands/multiagent/a2a/conftest.py
rename to tests/multiagent/a2a/conftest.py
index e0061a025..a9730eacb 100644
--- a/tests/strands/multiagent/a2a/conftest.py
+++ b/tests/multiagent/a2a/conftest.py
@@ -22,10 +22,6 @@ def mock_strands_agent():
     mock_result.message = {"content": [{"text": "Test response"}]}
     agent.return_value = mock_result
 
-    # Setup async methods
-    agent.invoke_async = AsyncMock(return_value=mock_result)
-    agent.stream_async = AsyncMock(return_value=iter([]))
-
     # Setup mock tool registry
     mock_tool_registry = MagicMock()
     mock_tool_registry.get_all_tools_config.return_value = {}
diff --git a/tests/multiagent/a2a/test_executor.py b/tests/multiagent/a2a/test_executor.py
new file mode 100644
index 000000000..2ac9bed91
--- /dev/null
+++ b/tests/multiagent/a2a/test_executor.py
@@ -0,0 +1,118 @@
+"""Tests for the StrandsA2AExecutor class."""
+
+from unittest.mock import MagicMock
+
+import pytest
+from a2a.types import UnsupportedOperationError
+from a2a.utils.errors import ServerError
+
+from strands.agent.agent_result import AgentResult as SAAgentResult
+from strands.multiagent.a2a.executor import StrandsA2AExecutor
+
+
+def test_executor_initialization(mock_strands_agent):
+    """Test that StrandsA2AExecutor initializes correctly."""
+    executor = StrandsA2AExecutor(mock_strands_agent)
+
+    assert executor.agent == mock_strands_agent
+
+
+@pytest.mark.asyncio
+async def test_execute_with_text_response(mock_strands_agent, mock_request_context, mock_event_queue):
+    """Test that execute processes text responses correctly."""
+    # Setup mock agent response
+    mock_result = MagicMock(spec=SAAgentResult)
+    mock_result.message = {"content": [{"text": "Test response"}]}
+    mock_strands_agent.return_value = mock_result
+
+    # Create executor and call execute
+    executor = StrandsA2AExecutor(mock_strands_agent)
+    await executor.execute(mock_request_context, mock_event_queue)
+
+    # Verify agent was called with correct input
+    mock_strands_agent.assert_called_once_with("Test input")
+
+    # Verify event was enqueued
+    mock_event_queue.enqueue_event.assert_called_once()
+    args, _ = mock_event_queue.enqueue_event.call_args
+    event = args[0]
+    assert event.parts[0].root.text == "Test response"
+
+
+@pytest.mark.asyncio
+async def test_execute_with_multiple_text_blocks(mock_strands_agent, mock_request_context, mock_event_queue):
+    """Test that execute processes multiple text blocks correctly."""
+    # Setup mock agent response with multiple text blocks
+    mock_result = MagicMock(spec=SAAgentResult)
+    mock_result.message = {"content": [{"text": "First response"}, {"text": "Second response"}]}
+    mock_strands_agent.return_value = mock_result
+
+    # Create executor and call execute
+    executor = StrandsA2AExecutor(mock_strands_agent)
+    await executor.execute(mock_request_context, mock_event_queue)
+
+    # Verify agent was called with correct input
+    mock_strands_agent.assert_called_once_with("Test input")
+
+    # Verify events were enqueued
+    assert mock_event_queue.enqueue_event.call_count == 2
+
+    # Check first event
+    args1, _ = mock_event_queue.enqueue_event.call_args_list[0]
+    event1 = args1[0]
+    assert event1.parts[0].root.text == "First response"
+
+    # Check second event
+    args2, _ = mock_event_queue.enqueue_event.call_args_list[1]
+    event2 = args2[0]
+    assert event2.parts[0].root.text == "Second response"
+
+
+@pytest.mark.asyncio
+async def test_execute_with_empty_response(mock_strands_agent, mock_request_context, mock_event_queue):
+    """Test that execute handles empty responses correctly."""
+    # Setup mock agent response with empty content
+    mock_result = MagicMock(spec=SAAgentResult)
+    mock_result.message = {"content": []}
+    mock_strands_agent.return_value = mock_result
+
+    # Create executor and call execute
+    executor = StrandsA2AExecutor(mock_strands_agent)
+    await executor.execute(mock_request_context, mock_event_queue)
+
+    # Verify agent was called with correct input
+    mock_strands_agent.assert_called_once_with("Test input")
+
+    # Verify no events were enqueued
+    mock_event_queue.enqueue_event.assert_not_called()
+
+
+@pytest.mark.asyncio
+async def test_execute_with_no_message(mock_strands_agent, mock_request_context, mock_event_queue):
+    """Test that execute handles responses with no message correctly."""
+    # Setup mock agent response with no message
+    mock_result = MagicMock(spec=SAAgentResult)
+    mock_result.message = None
+    mock_strands_agent.return_value = mock_result
+
+    # Create executor and call execute
+    executor = StrandsA2AExecutor(mock_strands_agent)
+    await executor.execute(mock_request_context, mock_event_queue)
+
+    # Verify agent was called with correct input
+    mock_strands_agent.assert_called_once_with("Test input")
+
+    # Verify no events were enqueued
+    mock_event_queue.enqueue_event.assert_not_called()
+
+
+@pytest.mark.asyncio
+async def test_cancel_raises_unsupported_operation_error(mock_strands_agent, mock_request_context, mock_event_queue):
+    """Test that cancel raises UnsupportedOperationError."""
+    executor = StrandsA2AExecutor(mock_strands_agent)
+
+    with pytest.raises(ServerError) as excinfo:
+        await executor.cancel(mock_request_context, mock_event_queue)
+
+    # Verify the error is a ServerError containing an UnsupportedOperationError
+    assert isinstance(excinfo.value.error, UnsupportedOperationError)
diff --git a/tests/strands/multiagent/a2a/test_server.py b/tests/multiagent/a2a/test_server.py
similarity index 96%
rename from tests/strands/multiagent/a2a/test_server.py
rename to tests/multiagent/a2a/test_server.py
index 74f470741..a851c8c7d 100644
--- a/tests/strands/multiagent/a2a/test_server.py
+++ b/tests/multiagent/a2a/test_server.py
@@ -44,14 +44,6 @@ def test_a2a_agent_initialization_with_custom_values(mock_strands_agent):
     assert a2a_agent.port == 8080
     assert a2a_agent.http_url == "http://127.0.0.1:8080/"
     assert a2a_agent.version == "1.0.0"
-    assert a2a_agent.capabilities.streaming is True
-
-
-def test_a2a_agent_initialization_with_streaming_always_enabled(mock_strands_agent):
-    """Test that A2AAgent always initializes with streaming enabled."""
-    a2a_agent = A2AServer(mock_strands_agent)
-
-    assert a2a_agent.capabilities.streaming is True
 
 
 def test_a2a_agent_initialization_with_custom_skills(mock_strands_agent):
@@ -479,16 +471,6 @@ def test_serve_with_custom_kwargs(mock_run, mock_strands_agent):
     assert kwargs["reload"] is True
 
 
-def test_executor_created_correctly(mock_strands_agent):
-    """Test that the executor is created correctly."""
-    from strands.multiagent.a2a.executor import StrandsA2AExecutor
-
-    a2a_agent = A2AServer(mock_strands_agent)
-
-    assert isinstance(a2a_agent.request_handler.agent_executor, StrandsA2AExecutor)
-    assert a2a_agent.request_handler.agent_executor.agent == mock_strands_agent
-
-
 @patch("uvicorn.run", side_effect=KeyboardInterrupt)
 def test_serve_handles_keyboard_interrupt(mock_run, mock_strands_agent, caplog):
     """Test that serve handles KeyboardInterrupt gracefully."""
diff --git a/tests/strands/agent/test_agent.py b/tests/strands/agent/test_agent.py
index 6460878b3..b49e294e2 100644
--- a/tests/strands/agent/test_agent.py
+++ b/tests/strands/agent/test_agent.py
@@ -180,7 +180,7 @@ def test_agent__init__tool_loader_format(tool_decorated, tool_module, tool_impor
 
     agent = Agent(tools=[tool_decorated, tool_module, tool_imported])
 
-    tru_tool_names = sorted(tool_spec["name"] for tool_spec in agent.tool_registry.get_all_tool_specs())
+    tru_tool_names = sorted(tool_spec["toolSpec"]["name"] for tool_spec in agent.tool_config["tools"])
     exp_tool_names = ["tool_decorated", "tool_imported", "tool_module"]
 
     assert tru_tool_names == exp_tool_names
@@ -191,12 +191,25 @@ def test_agent__init__tool_loader_dict(tool_module, tool_registry):
 
     agent = Agent(tools=[{"name": "tool_module", "path": tool_module}])
 
-    tru_tool_names = sorted(tool_spec["name"] for tool_spec in agent.tool_registry.get_all_tool_specs())
+    tru_tool_names = sorted(tool_spec["toolSpec"]["name"] for tool_spec in agent.tool_config["tools"])
     exp_tool_names = ["tool_module"]
 
     assert tru_tool_names == exp_tool_names
 
 
+def test_agent__init__invalid_max_parallel_tools(tool_registry):
+    _ = tool_registry
+
+    with pytest.raises(ValueError):
+        Agent(max_parallel_tools=0)
+
+
+def test_agent__init__one_max_parallel_tools_succeeds(tool_registry):
+    _ = tool_registry
+
+    Agent(max_parallel_tools=1)
+
+
 def test_agent__init__with_default_model():
     agent = Agent()
 
@@ -759,24 +772,6 @@ def test_agent_tool(mock_randint, agent):
     conversation_manager_spy.apply_management.assert_called_with(agent)
 
 
-@pytest.mark.asyncio
-async def test_agent_tool_in_async_context(mock_randint, agent):
-    mock_randint.return_value = 123
-
-    tru_result = agent.tool.tool_decorated(random_string="abcdEfghI123")
-    exp_result = {
-        "content": [
-            {
-                "text": "abcdEfghI123",
-            },
-        ],
-        "status": "success",
-        "toolUseId": "tooluse_tool_decorated_123",
-    }
-
-    assert tru_result == exp_result
-
-
 def test_agent_tool_user_message_override(agent):
     agent.tool.tool_decorated(random_string="abcdEfghI123", user_message_override="test override")
 
@@ -843,8 +838,8 @@ def test_agent_init_with_no_model_or_model_id():
     assert agent.model.get_config().get("model_id") == DEFAULT_BEDROCK_MODEL_ID
 
 
-def test_agent_tool_no_parameter_conflict(agent, tool_registry, mock_randint, mock_run_tool, agenerator):
-    mock_run_tool.return_value = agenerator([{}])
+def test_agent_tool_no_parameter_conflict(agent, tool_registry, mock_randint, mock_run_tool):
+    mock_run_tool.return_value = iter([])
 
     @strands.tools.tool(name="system_prompter")
     def function(system_prompt: str) -> str:
@@ -857,18 +852,18 @@ def function(system_prompt: str) -> str:
     agent.tool.system_prompter(system_prompt="tool prompt")
 
     mock_run_tool.assert_called_with(
-        agent,
-        {
+        agent=agent,
+        tool={
             "toolUseId": "tooluse_system_prompter_1",
             "name": "system_prompter",
             "input": {"system_prompt": "tool prompt"},
         },
-        {"system_prompt": "tool prompt"},
+        kwargs={"system_prompt": "tool prompt"},
     )
 
 
-def test_agent_tool_with_name_normalization(agent, tool_registry, mock_randint, mock_run_tool, agenerator):
-    mock_run_tool.return_value = agenerator([{}])
+def test_agent_tool_with_name_normalization(agent, tool_registry, mock_randint, mock_run_tool):
+    mock_run_tool.return_value = iter([])
 
     tool_name = "system-prompter"
 
@@ -884,15 +879,15 @@ def function(system_prompt: str) -> str:
 
     # Verify the correct tool was invoked
     assert mock_run_tool.call_count == 1
-    tru_tool_use = mock_run_tool.call_args.args[1]
-    exp_tool_use = {
+    tool_call = mock_run_tool.call_args.kwargs.get("tool")
+
+    assert tool_call == {
         # Note that the tool-use uses the "python safe" name
         "toolUseId": "tooluse_system_prompter_1",
         # But the name of the tool is the one in the registry
         "name": tool_name,
         "input": {"system_prompt": "tool prompt"},
     }
-    assert tru_tool_use == exp_tool_use
 
 
 def test_agent_tool_with_no_normalized_match(agent, tool_registry, mock_randint):
@@ -1022,39 +1017,6 @@ async def test_event_loop(*args, **kwargs):
     mock_callback.assert_has_calls(exp_calls)
 
 
-@pytest.mark.asyncio
-async def test_stream_async_multi_modal_input(mock_model, agent, agenerator, alist):
-    mock_model.mock_converse.return_value = agenerator(
-        [
-            {"contentBlockDelta": {"delta": {"text": "I see text and an image"}}},
-            {"contentBlockStop": {}},
-            {"messageStop": {"stopReason": "end_turn"}},
-        ]
-    )
-
-    prompt = [
-        {"text": "This is a description of the image:"},
-        {
-            "image": {
-                "format": "png",
-                "source": {
-                    "bytes": b"\x89PNG\r\n\x1a\n",
-                },
-            }
-        },
-    ]
-
-    stream = agent.stream_async(prompt)
-    await alist(stream)
-
-    tru_message = agent.messages
-    exp_message = [
-        {"content": prompt, "role": "user"},
-        {"content": [{"text": "I see text and an image"}], "role": "assistant"},
-    ]
-    assert tru_message == exp_message
-
-
 @pytest.mark.asyncio
 async def test_stream_async_passes_kwargs(agent, mock_model, mock_event_loop_cycle, agenerator, alist):
     mock_model.mock_converse.side_effect = [
@@ -1188,12 +1150,12 @@ def test_agent_call_creates_and_ends_span_on_success(mock_get_tracer, mock_model
 
     # Verify span was created
     mock_tracer.start_agent_span.assert_called_once_with(
+        prompt="test prompt",
         agent_name="Strands Agents",
-        custom_trace_attributes=agent.trace_attributes,
-        message={"content": [{"text": "test prompt"}], "role": "user"},
         model_id=unittest.mock.ANY,
-        system_prompt=agent.system_prompt,
         tools=agent.tool_names,
+        system_prompt=agent.system_prompt,
+        custom_trace_attributes=agent.trace_attributes,
     )
 
     # Verify span was ended with the result
@@ -1222,12 +1184,12 @@ async def test_event_loop(*args, **kwargs):
 
     # Verify span was created
     mock_tracer.start_agent_span.assert_called_once_with(
-        custom_trace_attributes=agent.trace_attributes,
+        prompt="test prompt",
         agent_name="Strands Agents",
-        message={"content": [{"text": "test prompt"}], "role": "user"},
         model_id=unittest.mock.ANY,
-        system_prompt=agent.system_prompt,
         tools=agent.tool_names,
+        system_prompt=agent.system_prompt,
+        custom_trace_attributes=agent.trace_attributes,
     )
 
     expected_response = AgentResult(
@@ -1260,12 +1222,12 @@ def test_agent_call_creates_and_ends_span_on_exception(mock_get_tracer, mock_mod
 
     # Verify span was created
     mock_tracer.start_agent_span.assert_called_once_with(
-        custom_trace_attributes=agent.trace_attributes,
+        prompt="test prompt",
         agent_name="Strands Agents",
-        message={"content": [{"text": "test prompt"}], "role": "user"},
         model_id=unittest.mock.ANY,
-        system_prompt=agent.system_prompt,
         tools=agent.tool_names,
+        system_prompt=agent.system_prompt,
+        custom_trace_attributes=agent.trace_attributes,
     )
 
     # Verify span was ended with the exception
@@ -1296,12 +1258,12 @@ async def test_agent_stream_async_creates_and_ends_span_on_exception(mock_get_tr
 
     # Verify span was created
     mock_tracer.start_agent_span.assert_called_once_with(
+        prompt="test prompt",
         agent_name="Strands Agents",
-        custom_trace_attributes=agent.trace_attributes,
-        message={"content": [{"text": "test prompt"}], "role": "user"},
         model_id=unittest.mock.ANY,
-        system_prompt=agent.system_prompt,
         tools=agent.tool_names,
+        system_prompt=agent.system_prompt,
+        custom_trace_attributes=agent.trace_attributes,
     )
 
     # Verify span was ended with the exception
diff --git a/tests/strands/agent/test_agent_hooks.py b/tests/strands/agent/test_agent_hooks.py
index 22f261b15..2953d6ab6 100644
--- a/tests/strands/agent/test_agent_hooks.py
+++ b/tests/strands/agent/test_agent_hooks.py
@@ -1,17 +1,12 @@
-from unittest.mock import ANY, Mock, call, patch
+import unittest.mock
+from unittest.mock import call
 
 import pytest
 from pydantic import BaseModel
 
 import strands
 from strands import Agent
-from strands.experimental.hooks import (
-    AfterToolInvocationEvent,
-    AgentInitializedEvent,
-    BeforeToolInvocationEvent,
-    EndRequestEvent,
-    StartRequestEvent,
-)
+from strands.experimental.hooks import AgentInitializedEvent, EndRequestEvent, StartRequestEvent
 from strands.types.content import Messages
 from tests.fixtures.mock_hook_provider import MockHookProvider
 from tests.fixtures.mocked_model_provider import MockedModelProvider
@@ -19,9 +14,7 @@
 
 @pytest.fixture
 def hook_provider():
-    return MockHookProvider(
-        [AgentInitializedEvent, StartRequestEvent, EndRequestEvent, AfterToolInvocationEvent, BeforeToolInvocationEvent]
-    )
+    return MockHookProvider([AgentInitializedEvent, StartRequestEvent, EndRequestEvent])
 
 
 @pytest.fixture
@@ -78,7 +71,7 @@ class User(BaseModel):
     return User(name="Jane Doe", age=30)
 
 
-@patch("strands.experimental.hooks.registry.HookRegistry.invoke_callbacks")
+@unittest.mock.patch("strands.experimental.hooks.registry.HookRegistry.invoke_callbacks")
 def test_agent__init__hooks(mock_invoke_callbacks):
     """Verify that the AgentInitializedEvent is emitted on Agent construction."""
     agent = Agent()
@@ -93,21 +86,11 @@ def test_agent__call__hooks(agent, hook_provider, agent_tool, tool_use):
 
     agent("test message")
 
-    length, events = hook_provider.get_events()
+    events = hook_provider.get_events()
+    assert len(events) == 2
 
-    assert length == 4
-    assert next(events) == StartRequestEvent(agent=agent)
-    assert next(events) == BeforeToolInvocationEvent(
-        agent=agent, selected_tool=agent_tool, tool_use=tool_use, kwargs=ANY
-    )
-    assert next(events) == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=agent_tool,
-        tool_use=tool_use,
-        kwargs=ANY,
-        result={"content": [{"text": "!loot a dekovni I"}], "status": "success", "toolUseId": "123"},
-    )
-    assert next(events) == EndRequestEvent(agent=agent)
+    assert events.popleft() == StartRequestEvent(agent=agent)
+    assert events.popleft() == EndRequestEvent(agent=agent)
 
 
 @pytest.mark.asyncio
@@ -121,28 +104,17 @@ async def test_agent_stream_async_hooks(agent, hook_provider, agent_tool, tool_u
     async for _ in iterator:
         pass
 
-    length, events = hook_provider.get_events()
+    events = hook_provider.get_events()
+    assert len(events) == 2
 
-    assert length == 4
-
-    assert next(events) == StartRequestEvent(agent=agent)
-    assert next(events) == BeforeToolInvocationEvent(
-        agent=agent, selected_tool=agent_tool, tool_use=tool_use, kwargs=ANY
-    )
-    assert next(events) == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=agent_tool,
-        tool_use=tool_use,
-        kwargs=ANY,
-        result={"content": [{"text": "!loot a dekovni I"}], "status": "success", "toolUseId": "123"},
-    )
-    assert next(events) == EndRequestEvent(agent=agent)
+    assert events.popleft() == StartRequestEvent(agent=agent)
+    assert events.popleft() == EndRequestEvent(agent=agent)
 
 
 def test_agent_structured_output_hooks(agent, hook_provider, user, agenerator):
     """Verify that the correct hook events are emitted as part of structured_output."""
 
-    agent.model.structured_output = Mock(return_value=agenerator([{"output": user}]))
+    agent.model.structured_output = unittest.mock.Mock(return_value=agenerator([{"output": user}]))
     agent.structured_output(type(user), "example prompt")
 
     assert hook_provider.events_received == [StartRequestEvent(agent=agent), EndRequestEvent(agent=agent)]
@@ -152,7 +124,7 @@ def test_agent_structured_output_hooks(agent, hook_provider, user, agenerator):
 async def test_agent_structured_async_output_hooks(agent, hook_provider, user, agenerator):
     """Verify that the correct hook events are emitted as part of structured_output_async."""
 
-    agent.model.structured_output = Mock(return_value=agenerator([{"output": user}]))
+    agent.model.structured_output = unittest.mock.Mock(return_value=agenerator([{"output": user}]))
     await agent.structured_output_async(type(user), "example prompt")
 
     assert hook_provider.events_received == [StartRequestEvent(agent=agent), EndRequestEvent(agent=agent)]
diff --git a/tests/strands/event_loop/test_event_loop.py b/tests/strands/event_loop/test_event_loop.py
index 0d35fe28b..1b37fc106 100644
--- a/tests/strands/event_loop/test_event_loop.py
+++ b/tests/strands/event_loop/test_event_loop.py
@@ -1,17 +1,15 @@
 import concurrent
 import unittest.mock
-from unittest.mock import ANY, MagicMock, call, patch
+from unittest.mock import MagicMock, call, patch
 
 import pytest
 
 import strands
 import strands.telemetry
 from strands.event_loop.event_loop import run_tool
-from strands.experimental.hooks import AfterToolInvocationEvent, BeforeToolInvocationEvent, HookProvider, HookRegistry
 from strands.telemetry.metrics import EventLoopMetrics
 from strands.tools.registry import ToolRegistry
 from strands.types.exceptions import ContextWindowOverflowException, EventLoopException, ModelThrottledException
-from tests.fixtures.mock_hook_provider import MockHookProvider
 
 
 @pytest.fixture
@@ -35,6 +33,11 @@ def messages():
     return [{"role": "user", "content": [{"text": "Hello"}]}]
 
 
+@pytest.fixture
+def tool_config():
+    return {"tools": [{"toolSpec": {"name": "tool_for_testing"}}], "toolChoice": {"auto": {}}}
+
+
 @pytest.fixture
 def tool_registry():
     return ToolRegistry()
@@ -47,8 +50,8 @@ def thread_pool():
 
 @pytest.fixture
 def tool(tool_registry):
-    @strands.tool
-    def tool_for_testing(random_string: str):
+    @strands.tools.tool
+    def tool_for_testing(random_string: str) -> str:
         return random_string
 
     tool_registry.register_tool(tool_for_testing)
@@ -56,28 +59,6 @@ def tool_for_testing(random_string: str):
     return tool_for_testing
 
 
-@pytest.fixture
-def tool_times_2(tool_registry):
-    @strands.tools.tool
-    def multiply_by_2(x: int) -> int:
-        return x * 2
-
-    tool_registry.register_tool(multiply_by_2)
-
-    return multiply_by_2
-
-
-@pytest.fixture
-def tool_times_5(tool_registry):
-    @strands.tools.tool
-    def multiply_by_5(x: int) -> int:
-        return x * 5
-
-    tool_registry.register_tool(multiply_by_5)
-
-    return multiply_by_5
-
-
 @pytest.fixture
 def tool_stream(tool):
     return [
@@ -98,28 +79,16 @@ def tool_stream(tool):
 
 
 @pytest.fixture
-def hook_registry():
-    return HookRegistry()
-
-
-@pytest.fixture
-def hook_provider(hook_registry):
-    provider = MockHookProvider(event_types=[BeforeToolInvocationEvent, AfterToolInvocationEvent])
-    hook_registry.add_hook(provider)
-    return provider
-
-
-@pytest.fixture
-def agent(model, system_prompt, messages, tool_registry, thread_pool, hook_registry):
+def agent(model, system_prompt, messages, tool_config, tool_registry, thread_pool):
     mock = unittest.mock.Mock(name="agent")
     mock.config.cache_points = []
     mock.model = model
     mock.system_prompt = system_prompt
     mock.messages = messages
+    mock.tool_config = tool_config
     mock.tool_registry = tool_registry
     mock.thread_pool = thread_pool
     mock.event_loop_metrics = EventLoopMetrics()
-    mock._hooks = hook_registry
 
     return mock
 
@@ -291,7 +260,6 @@ async def test_event_loop_cycle_tool_result(
     system_prompt,
     messages,
     tool_stream,
-    tool_registry,
     agenerator,
     alist,
 ):
@@ -347,7 +315,7 @@ async def test_event_loop_cycle_tool_result(
             },
             {"role": "assistant", "content": [{"text": "test text"}]},
         ],
-        tool_registry.get_all_tool_specs(),
+        [{"name": "tool_for_testing"}],
         "p1",
     )
 
@@ -756,255 +724,31 @@ async def test_prepare_next_cycle_in_tool_execution(agent, model, tool_stream, a
         assert recursive_args["kwargs"]["event_loop_parent_cycle_id"] == recursive_args["kwargs"]["event_loop_cycle_id"]
 
 
-@pytest.mark.asyncio
-async def test_run_tool(agent, tool, alist):
+def test_run_tool(agent, tool, generate):
     process = run_tool(
-        agent,
-        tool_use={"toolUseId": "tool_use_id", "name": tool.tool_name, "input": {"random_string": "a_string"}},
+        agent=agent,
+        tool={"toolUseId": "tool_use_id", "name": tool.tool_name, "input": {"random_string": "a_string"}},
         kwargs={},
     )
 
-    tru_result = (await alist(process))[-1]
+    _, tru_result = generate(process)
     exp_result = {"toolUseId": "tool_use_id", "status": "success", "content": [{"text": "a_string"}]}
 
     assert tru_result == exp_result
 
 
-@pytest.mark.asyncio
-async def test_run_tool_missing_tool(agent, alist):
-    process = run_tool(
-        agent,
-        tool_use={"toolUseId": "missing", "name": "missing", "input": {}},
-        kwargs={},
-    )
-
-    tru_events = await alist(process)
-    exp_events = [
-        {
-            "toolUseId": "missing",
-            "status": "error",
-            "content": [{"text": "Unknown tool: missing"}],
-        },
-    ]
-
-    assert tru_events == exp_events
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hooks(agent, hook_provider, tool_times_2, alist):
-    """Test that the correct hooks are emitted."""
-
-    process = run_tool(
-        agent=agent,
-        tool_use={"toolUseId": "test", "name": tool_times_2.tool_name, "input": {"x": 5}},
-        kwargs={},
-    )
-    await alist(process)
-
-    assert len(hook_provider.events_received) == 2
-
-    assert hook_provider.events_received[0] == BeforeToolInvocationEvent(
-        agent=agent,
-        selected_tool=tool_times_2,
-        tool_use={"input": {"x": 5}, "name": "multiply_by_2", "toolUseId": "test"},
-        kwargs=ANY,
-    )
-
-    assert hook_provider.events_received[1] == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=tool_times_2,
-        exception=None,
-        tool_use={"toolUseId": "test", "name": tool_times_2.tool_name, "input": {"x": 5}},
-        result={"toolUseId": "test", "status": "success", "content": [{"text": "10"}]},
-        kwargs=ANY,
-    )
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hooks_on_missing_tool(agent, hook_provider, alist):
-    """Test that AfterToolInvocation hook is invoked even when tool throws exception."""
-    process = run_tool(
-        agent=agent,
-        tool_use={"toolUseId": "test", "name": "missing_tool", "input": {"x": 5}},
-        kwargs={},
-    )
-    await alist(process)
-
-    assert len(hook_provider.events_received) == 2
-
-    assert hook_provider.events_received[0] == BeforeToolInvocationEvent(
-        agent=agent,
-        selected_tool=None,
-        tool_use={"input": {"x": 5}, "name": "missing_tool", "toolUseId": "test"},
-        kwargs=ANY,
-    )
-
-    assert hook_provider.events_received[1] == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=None,
-        tool_use={"input": {"x": 5}, "name": "missing_tool", "toolUseId": "test"},
-        kwargs=ANY,
-        result={"content": [{"text": "Unknown tool: missing_tool"}], "status": "error", "toolUseId": "test"},
-        exception=None,
-    )
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hook_after_tool_invocation_on_exception(agent, tool_registry, hook_provider, alist):
-    """Test that AfterToolInvocation hook is invoked even when tool throws exception."""
-    error = ValueError("Tool failed")
-
-    failing_tool = MagicMock()
-    failing_tool.tool_name = "failing_tool"
-
-    failing_tool.stream.side_effect = error
-
-    tool_registry.register_tool(failing_tool)
-
-    process = run_tool(
-        agent=agent,
-        tool_use={"toolUseId": "test", "name": "failing_tool", "input": {"x": 5}},
-        kwargs={},
-    )
-    await alist(process)
-
-    assert hook_provider.events_received[1] == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=failing_tool,
-        tool_use={"input": {"x": 5}, "name": "failing_tool", "toolUseId": "test"},
-        kwargs=ANY,
-        result={"content": [{"text": "Error: Tool failed"}], "status": "error", "toolUseId": "test"},
-        exception=error,
-    )
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hook_before_tool_invocation_updates(agent, tool_times_5, hook_registry, hook_provider, alist):
-    """Test that modifying properties on BeforeToolInvocation takes effect."""
-
-    updated_tool_use = {"toolUseId": "modified", "name": "replacement_tool", "input": {"x": 3}}
-
-    def modify_hook(event: BeforeToolInvocationEvent):
-        # Modify selected_tool to use replacement_tool
-        event.selected_tool = tool_times_5
-        # Modify tool_use to change toolUseId
-        event.tool_use = updated_tool_use
-
-    hook_registry.add_callback(BeforeToolInvocationEvent, modify_hook)
-
-    process = run_tool(
-        agent=agent,
-        tool_use={"toolUseId": "original", "name": "original_tool", "input": {"x": 1}},
-        kwargs={},
-    )
-    result = (await alist(process))[-1]
-
-    # Should use replacement_tool (5 * 3 = 15) instead of original_tool (1 * 2 = 2)
-    assert result == {"toolUseId": "modified", "status": "success", "content": [{"text": "15"}]}
-
-    assert hook_provider.events_received[1] == AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=tool_times_5,
-        tool_use=updated_tool_use,
-        kwargs=ANY,
-        result={"content": [{"text": "15"}], "status": "success", "toolUseId": "modified"},
-        exception=None,
-    )
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hook_after_tool_invocation_updates(agent, tool_times_2, hook_registry, alist):
-    """Test that modifying properties on AfterToolInvocation takes effect."""
-
-    updated_result = {"toolUseId": "modified", "status": "success", "content": [{"text": "modified_result"}]}
-
-    def modify_hook(event: AfterToolInvocationEvent):
-        # Modify result to change the output
-        event.result = updated_result
-
-    hook_registry.add_callback(AfterToolInvocationEvent, modify_hook)
-
+def test_run_tool_missing_tool(agent, generate):
     process = run_tool(
         agent=agent,
-        tool_use={"toolUseId": "test", "name": tool_times_2.tool_name, "input": {"x": 5}},
+        tool={"toolUseId": "missing", "name": "missing", "input": {}},
         kwargs={},
     )
 
-    result = (await alist(process))[-1]
-    assert result == updated_result
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hook_after_tool_invocation_updates_with_missing_tool(agent, hook_registry, alist):
-    """Test that modifying properties on AfterToolInvocation takes effect."""
-
-    updated_result = {"toolUseId": "modified", "status": "success", "content": [{"text": "modified_result"}]}
-
-    def modify_hook(event: AfterToolInvocationEvent):
-        # Modify result to change the output
-        event.result = updated_result
-
-    hook_registry.add_callback(AfterToolInvocationEvent, modify_hook)
-
-    process = run_tool(
-        agent=agent,
-        tool_use={"toolUseId": "test", "name": "missing_tool", "input": {"x": 5}},
-        kwargs={},
-    )
-
-    result = (await alist(process))[-1]
-    assert result == updated_result
-
-
-@pytest.mark.asyncio
-async def test_run_tool_hook_update_result_with_missing_tool(agent, tool_registry, hook_registry, alist):
-    """Test that modifying properties on AfterToolInvocation takes effect."""
-
-    @strands.tool
-    def test_quota():
-        return "9"
-
-    tool_registry.register_tool(test_quota)
-
-    class ExampleProvider(HookProvider):
-        def register_hooks(self, registry: "HookRegistry") -> None:
-            registry.add_callback(BeforeToolInvocationEvent, self.before_tool_call)
-            registry.add_callback(AfterToolInvocationEvent, self.after_tool_call)
-
-        def before_tool_call(self, event: BeforeToolInvocationEvent):
-            if event.tool_use.get("name") == "test_quota":
-                event.selected_tool = None
-
-        def after_tool_call(self, event: AfterToolInvocationEvent):
-            if event.tool_use.get("name") == "test_quota":
-                event.result = {
-                    "status": "error",
-                    "toolUseId": "test",
-                    "content": [{"text": "This tool has been used too many times!"}],
-                }
-
-    hook_registry.add_hook(ExampleProvider())
-
-    with patch.object(strands.event_loop.event_loop, "logger") as mock_logger:
-        process = run_tool(
-            agent=agent,
-            tool_use={"toolUseId": "test", "name": "test_quota", "input": {"x": 5}},
-            kwargs={},
-        )
-
-        result = (await alist(process))[-1]
-
-    assert result == {
+    _, tru_result = generate(process)
+    exp_result = {
+        "toolUseId": "missing",
         "status": "error",
-        "toolUseId": "test",
-        "content": [{"text": "This tool has been used too many times!"}],
+        "content": [{"text": "Unknown tool: missing"}],
     }
 
-    assert mock_logger.debug.call_args_list == [
-        call("tool_use=<%s> | streaming", {"toolUseId": "test", "name": "test_quota", "input": {"x": 5}}),
-        call(
-            "tool_name=<%s>, tool_use_id=<%s> | a hook resulted in a non-existing tool call",
-            "test_quota",
-            "test",
-        ),
-    ]
+    assert tru_result == exp_result
diff --git a/tests/strands/event_loop/test_streaming.py b/tests/strands/event_loop/test_streaming.py
index 44c5b5a8e..7b64264e3 100644
--- a/tests/strands/event_loop/test_streaming.py
+++ b/tests/strands/event_loop/test_streaming.py
@@ -549,7 +549,7 @@ async def test_stream_messages(agenerator, alist):
         mock_model,
         system_prompt="test prompt",
         messages=[{"role": "assistant", "content": [{"text": "a"}, {"text": " \n"}]}],
-        tool_specs=None,
+        tool_config=None,
     )
 
     tru_events = await alist(stream)
diff --git a/tests/strands/experimental/hooks/test_events.py b/tests/strands/experimental/hooks/test_events.py
deleted file mode 100644
index c9c5ecdd7..000000000
--- a/tests/strands/experimental/hooks/test_events.py
+++ /dev/null
@@ -1,124 +0,0 @@
-from unittest.mock import Mock
-
-import pytest
-
-from strands.experimental.hooks.events import (
-    AfterToolInvocationEvent,
-    AgentInitializedEvent,
-    BeforeToolInvocationEvent,
-    EndRequestEvent,
-    StartRequestEvent,
-)
-from strands.types.tools import ToolResult, ToolUse
-
-
-@pytest.fixture
-def agent():
-    return Mock()
-
-
-@pytest.fixture
-def tool():
-    tool = Mock()
-    tool.tool_name = "test_tool"
-    return tool
-
-
-@pytest.fixture
-def tool_use():
-    return ToolUse(name="test_tool", toolUseId="123", input={"param": "value"})
-
-
-@pytest.fixture
-def tool_kwargs():
-    return {"param": "value"}
-
-
-@pytest.fixture
-def tool_result():
-    return ToolResult(content=[{"text": "result"}], status="success", toolUseId="123")
-
-
-@pytest.fixture
-def initialized_event(agent):
-    return AgentInitializedEvent(agent=agent)
-
-
-@pytest.fixture
-def start_request_event(agent):
-    return StartRequestEvent(agent=agent)
-
-
-@pytest.fixture
-def end_request_event(agent):
-    return EndRequestEvent(agent=agent)
-
-
-@pytest.fixture
-def before_tool_event(agent, tool, tool_use, tool_kwargs):
-    return BeforeToolInvocationEvent(
-        agent=agent,
-        selected_tool=tool,
-        tool_use=tool_use,
-        kwargs=tool_kwargs,
-    )
-
-
-@pytest.fixture
-def after_tool_event(agent, tool, tool_use, tool_kwargs, tool_result):
-    return AfterToolInvocationEvent(
-        agent=agent,
-        selected_tool=tool,
-        tool_use=tool_use,
-        kwargs=tool_kwargs,
-        result=tool_result,
-    )
-
-
-def test_event_should_reverse_callbacks(
-    initialized_event,
-    start_request_event,
-    end_request_event,
-    before_tool_event,
-    after_tool_event,
-):
-    # note that we ignore E712 (explicit booleans) for consistency/readability purposes
-
-    assert initialized_event.should_reverse_callbacks == False  # noqa: E712
-
-    assert start_request_event.should_reverse_callbacks == False  # noqa: E712
-    assert end_request_event.should_reverse_callbacks == True  # noqa: E712
-
-    assert before_tool_event.should_reverse_callbacks == False  # noqa: E712
-    assert after_tool_event.should_reverse_callbacks == True  # noqa: E712
-
-
-def test_before_tool_invocation_event_can_write_properties(before_tool_event):
-    new_tool_use = ToolUse(name="new_tool", toolUseId="456", input={})
-    before_tool_event.selected_tool = None  # Should not raise
-    before_tool_event.tool_use = new_tool_use  # Should not raise
-
-
-def test_before_tool_invocation_event_cannot_write_properties(before_tool_event):
-    with pytest.raises(AttributeError, match="Property agent is not writable"):
-        before_tool_event.agent = Mock()
-    with pytest.raises(AttributeError, match="Property kwargs is not writable"):
-        before_tool_event.kwargs = {}
-
-
-def test_after_tool_invocation_event_can_write_properties(after_tool_event):
-    new_result = ToolResult(content=[{"text": "new result"}], status="success", toolUseId="456")
-    after_tool_event.result = new_result  # Should not raise
-
-
-def test_after_tool_invocation_event_cannot_write_properties(after_tool_event):
-    with pytest.raises(AttributeError, match="Property agent is not writable"):
-        after_tool_event.agent = Mock()
-    with pytest.raises(AttributeError, match="Property selected_tool is not writable"):
-        after_tool_event.selected_tool = None
-    with pytest.raises(AttributeError, match="Property tool_use is not writable"):
-        after_tool_event.tool_use = ToolUse(name="new", toolUseId="456", input={})
-    with pytest.raises(AttributeError, match="Property kwargs is not writable"):
-        after_tool_event.kwargs = {}
-    with pytest.raises(AttributeError, match="Property exception is not writable"):
-        after_tool_event.exception = Exception("test")
diff --git a/tests/strands/models/test_anthropic.py b/tests/strands/models/test_anthropic.py
index fa1eb8616..66046b7a8 100644
--- a/tests/strands/models/test_anthropic.py
+++ b/tests/strands/models/test_anthropic.py
@@ -11,7 +11,7 @@
 
 @pytest.fixture
 def anthropic_client():
-    with unittest.mock.patch.object(strands.models.anthropic.anthropic, "AsyncAnthropic") as mock_client_cls:
+    with unittest.mock.patch.object(strands.models.anthropic.anthropic, "Anthropic") as mock_client_cls:
         yield mock_client_cls.return_value
 
 
@@ -625,7 +625,7 @@ def test_format_chunk_unknown(model):
 
 
 @pytest.mark.asyncio
-async def test_stream(anthropic_client, model, agenerator, alist):
+async def test_stream(anthropic_client, model, alist):
     mock_event_1 = unittest.mock.Mock(
         type="message_start",
         dict=lambda: {"type": "message_start"},
@@ -646,9 +646,9 @@ async def test_stream(anthropic_client, model, agenerator, alist):
         ),
     )
 
-    mock_context = unittest.mock.AsyncMock()
-    mock_context.__aenter__.return_value = agenerator([mock_event_1, mock_event_2, mock_event_3])
-    anthropic_client.messages.stream.return_value = mock_context
+    mock_stream = unittest.mock.MagicMock()
+    mock_stream.__iter__.return_value = iter([mock_event_1, mock_event_2, mock_event_3])
+    anthropic_client.messages.stream.return_value.__enter__.return_value = mock_stream
 
     request = {"model": "m1"}
     response = model.stream(request)
@@ -705,7 +705,7 @@ async def test_stream_bad_request_error(anthropic_client, model):
 
 
 @pytest.mark.asyncio
-async def test_structured_output(anthropic_client, model, test_output_model_cls, agenerator, alist):
+async def test_structured_output(anthropic_client, model, test_output_model_cls, alist):
     messages = [{"role": "user", "content": [{"text": "Generate a person"}]}]
 
     events = [
@@ -749,9 +749,9 @@ async def test_structured_output(anthropic_client, model, test_output_model_cls,
         ),
     ]
 
-    mock_context = unittest.mock.AsyncMock()
-    mock_context.__aenter__.return_value = agenerator(events)
-    anthropic_client.messages.stream.return_value = mock_context
+    mock_stream = unittest.mock.MagicMock()
+    mock_stream.__iter__.return_value = iter(events)
+    anthropic_client.messages.stream.return_value.__enter__.return_value = mock_stream
 
     stream = model.structured_output(test_output_model_cls, messages)
     events = await alist(stream)
diff --git a/tests/strands/models/test_mistral.py b/tests/strands/models/test_mistral.py
index a93e77593..786ba25b3 100644
--- a/tests/strands/models/test_mistral.py
+++ b/tests/strands/models/test_mistral.py
@@ -10,7 +10,7 @@
 
 @pytest.fixture
 def mistral_client():
-    with unittest.mock.patch.object(strands.models.mistral.mistralai, "Mistral") as mock_client_cls:
+    with unittest.mock.patch.object(strands.models.mistral, "Mistral") as mock_client_cls:
         yield mock_client_cls.return_value
 
 
@@ -436,42 +436,9 @@ def test_format_chunk_unknown(model):
         model.format_chunk(event)
 
 
-@pytest.mark.asyncio
-async def test_stream(mistral_client, model, agenerator, alist):
-    mock_event = unittest.mock.Mock(
-        data=unittest.mock.Mock(
-            choices=[
-                unittest.mock.Mock(
-                    delta=unittest.mock.Mock(content="test stream", tool_calls=None),
-                    finish_reason="end_turn",
-                )
-            ]
-        ),
-        usage="usage",
-    )
-
-    mistral_client.chat.stream_async = unittest.mock.AsyncMock(return_value=agenerator([mock_event]))
-
-    request = {"model": "m1"}
-    response = model.stream(request)
-
-    tru_events = await alist(response)
-    exp_events = [
-        {"chunk_type": "message_start"},
-        {"chunk_type": "content_start", "data_type": "text"},
-        {"chunk_type": "content_delta", "data_type": "text", "data": "test stream"},
-        {"chunk_type": "content_stop", "data_type": "text"},
-        {"chunk_type": "message_stop", "data": "end_turn"},
-        {"chunk_type": "metadata", "data": "usage"},
-    ]
-    assert tru_events == exp_events
-
-    mistral_client.chat.stream_async.assert_called_once_with(**request)
-
-
 @pytest.mark.asyncio
 async def test_stream_rate_limit_error(mistral_client, model, alist):
-    mistral_client.chat.stream_async.side_effect = Exception("rate limit exceeded (429)")
+    mistral_client.chat.stream.side_effect = Exception("rate limit exceeded (429)")
 
     with pytest.raises(ModelThrottledException, match="rate limit exceeded"):
         await alist(model.stream({}))
@@ -479,7 +446,7 @@ async def test_stream_rate_limit_error(mistral_client, model, alist):
 
 @pytest.mark.asyncio
 async def test_stream_other_error(mistral_client, model, alist):
-    mistral_client.chat.stream_async.side_effect = Exception("some other error")
+    mistral_client.chat.stream.side_effect = Exception("some other error")
 
     with pytest.raises(Exception, match="some other error"):
         await alist(model.stream({}))
@@ -494,7 +461,7 @@ async def test_structured_output_success(mistral_client, model, test_output_mode
     mock_response.choices[0].message.tool_calls = [unittest.mock.Mock()]
     mock_response.choices[0].message.tool_calls[0].function.arguments = '{"name": "John", "age": 30}'
 
-    mistral_client.chat.complete_async = unittest.mock.AsyncMock(return_value=mock_response)
+    mistral_client.chat.complete.return_value = mock_response
 
     stream = model.structured_output(test_output_model_cls, messages)
     events = await alist(stream)
@@ -510,7 +477,7 @@ async def test_structured_output_no_tool_calls(mistral_client, model, test_outpu
     mock_response.choices = [unittest.mock.Mock()]
     mock_response.choices[0].message.tool_calls = None
 
-    mistral_client.chat.complete_async = unittest.mock.AsyncMock(return_value=mock_response)
+    mistral_client.chat.complete.return_value = mock_response
 
     prompt = [{"role": "user", "content": [{"text": "Extract data"}]}]
 
@@ -526,7 +493,7 @@ async def test_structured_output_invalid_json(mistral_client, model, test_output
     mock_response.choices[0].message.tool_calls = [unittest.mock.Mock()]
     mock_response.choices[0].message.tool_calls[0].function.arguments = "invalid json"
 
-    mistral_client.chat.complete_async = unittest.mock.AsyncMock(return_value=mock_response)
+    mistral_client.chat.complete.return_value = mock_response
 
     prompt = [{"role": "user", "content": [{"text": "Extract data"}]}]
 
diff --git a/tests/strands/models/test_ollama.py b/tests/strands/models/test_ollama.py
index aeba644a6..c718a602c 100644
--- a/tests/strands/models/test_ollama.py
+++ b/tests/strands/models/test_ollama.py
@@ -11,7 +11,7 @@
 
 @pytest.fixture
 def ollama_client():
-    with unittest.mock.patch.object(strands.models.ollama.ollama, "AsyncClient") as mock_client_cls:
+    with unittest.mock.patch.object(strands.models.ollama, "OllamaClient") as mock_client_cls:
         yield mock_client_cls.return_value
 
 
@@ -416,13 +416,13 @@ def test_format_chunk_other(model):
 
 
 @pytest.mark.asyncio
-async def test_stream(ollama_client, model, agenerator, alist):
+async def test_stream(ollama_client, model, alist):
     mock_event = unittest.mock.Mock()
     mock_event.message.tool_calls = None
     mock_event.message.content = "Hello"
     mock_event.done_reason = "stop"
 
-    ollama_client.chat = unittest.mock.AsyncMock(return_value=agenerator([mock_event]))
+    ollama_client.chat.return_value = [mock_event]
 
     request = {"model": "m1", "messages": [{"role": "user", "content": "Hello"}]}
     response = model.stream(request)
@@ -442,14 +442,14 @@ async def test_stream(ollama_client, model, agenerator, alist):
 
 
 @pytest.mark.asyncio
-async def test_stream_with_tool_calls(ollama_client, model, agenerator, alist):
+async def test_stream_with_tool_calls(ollama_client, model, alist):
     mock_event = unittest.mock.Mock()
     mock_tool_call = unittest.mock.Mock()
     mock_event.message.tool_calls = [mock_tool_call]
     mock_event.message.content = "I'll calculate that for you"
     mock_event.done_reason = "stop"
 
-    ollama_client.chat = unittest.mock.AsyncMock(return_value=agenerator([mock_event]))
+    ollama_client.chat.return_value = [mock_event]
 
     request = {"model": "m1", "messages": [{"role": "user", "content": "Calculate 2+2"}]}
     response = model.stream(request)
@@ -478,7 +478,7 @@ async def test_structured_output(ollama_client, model, test_output_model_cls, al
     mock_response = unittest.mock.Mock()
     mock_response.message.content = '{"name": "John", "age": 30}'
 
-    ollama_client.chat = unittest.mock.AsyncMock(return_value=mock_response)
+    ollama_client.chat.return_value = mock_response
 
     stream = model.structured_output(test_output_model_cls, messages)
     events = await alist(stream)
diff --git a/tests/strands/models/test_writer.py b/tests/strands/models/test_writer.py
deleted file mode 100644
index 09aa033c5..000000000
--- a/tests/strands/models/test_writer.py
+++ /dev/null
@@ -1,396 +0,0 @@
-import unittest.mock
-from typing import Any, List
-
-import pytest
-
-import strands
-from strands.models.writer import WriterModel
-
-
-@pytest.fixture
-def writer_client_cls():
-    with unittest.mock.patch.object(strands.models.writer.writerai, "AsyncClient") as mock_client_cls:
-        yield mock_client_cls
-
-
-@pytest.fixture
-def writer_client(writer_client_cls):
-    return writer_client_cls.return_value
-
-
-@pytest.fixture
-def client_args():
-    return {"api_key": "writer_api_key"}
-
-
-@pytest.fixture
-def model_id():
-    return "palmyra-x5"
-
-
-@pytest.fixture
-def stream_options():
-    return {"include_usage": True}
-
-
-@pytest.fixture
-def model(writer_client, model_id, stream_options, client_args):
-    _ = writer_client
-
-    return WriterModel(client_args, model_id=model_id, stream_options=stream_options)
-
-
-@pytest.fixture
-def messages():
-    return [{"role": "user", "content": [{"text": "test"}]}]
-
-
-@pytest.fixture
-def system_prompt():
-    return "System prompt"
-
-
-def test__init__(writer_client_cls, model_id, stream_options, client_args):
-    model = WriterModel(client_args=client_args, model_id=model_id, stream_options=stream_options)
-
-    config = model.get_config()
-    exp_config = {"stream_options": stream_options, "model_id": model_id}
-
-    assert config == exp_config
-
-    writer_client_cls.assert_called_once_with(api_key=client_args.get("api_key", ""))
-
-
-def test_update_config(model):
-    model.update_config(model_id="palmyra-x4")
-
-    model_id = model.get_config().get("model_id")
-
-    assert model_id == "palmyra-x4"
-
-
-def test_format_request_basic(model, messages, model_id, stream_options):
-    request = model.format_request(messages)
-
-    exp_request = {
-        "stream": True,
-        "messages": [{"role": "user", "content": [{"type": "text", "text": "test"}]}],
-        "model": model_id,
-        "stream_options": stream_options,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_params(model, messages, model_id, stream_options):
-    model.update_config(temperature=0.19)
-
-    request = model.format_request(messages)
-    exp_request = {
-        "messages": [{"role": "user", "content": [{"type": "text", "text": "test"}]}],
-        "model": model_id,
-        "stream_options": stream_options,
-        "temperature": 0.19,
-        "stream": True,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_system_prompt(model, messages, model_id, stream_options, system_prompt):
-    request = model.format_request(messages, system_prompt=system_prompt)
-
-    exp_request = {
-        "messages": [
-            {"content": "System prompt", "role": "system"},
-            {"content": [{"text": "test", "type": "text"}], "role": "user"},
-        ],
-        "model": model_id,
-        "stream_options": stream_options,
-        "stream": True,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_tool_use(model, model_id, stream_options):
-    messages = [
-        {
-            "role": "assistant",
-            "content": [
-                {
-                    "toolUse": {
-                        "toolUseId": "c1",
-                        "name": "calculator",
-                        "input": {"expression": "2+2"},
-                    },
-                },
-            ],
-        },
-    ]
-
-    request = model.format_request(messages)
-    exp_request = {
-        "messages": [
-            {
-                "role": "assistant",
-                "content": "",
-                "tool_calls": [
-                    {
-                        "function": {"arguments": '{"expression": "2+2"}', "name": "calculator"},
-                        "id": "c1",
-                        "type": "function",
-                    }
-                ],
-            },
-        ],
-        "model": model_id,
-        "stream_options": stream_options,
-        "stream": True,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_tool_results(model, model_id, stream_options):
-    messages = [
-        {
-            "role": "user",
-            "content": [
-                {
-                    "toolResult": {
-                        "toolUseId": "c1",
-                        "status": "success",
-                        "content": [
-                            {"text": "answer is 4"},
-                        ],
-                    }
-                }
-            ],
-        }
-    ]
-
-    request = model.format_request(messages)
-    exp_request = {
-        "messages": [
-            {
-                "role": "tool",
-                "content": [{"text": "answer is 4", "type": "text"}],
-                "tool_call_id": "c1",
-            },
-        ],
-        "model": model_id,
-        "stream_options": stream_options,
-        "stream": True,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_image(model, model_id, stream_options):
-    messages = [
-        {
-            "role": "user",
-            "content": [
-                {
-                    "image": {
-                        "format": "png",
-                        "source": {"bytes": b"lovely sunny day"},
-                    },
-                },
-            ],
-        },
-    ]
-
-    request = model.format_request(messages)
-    exp_request = {
-        "messages": [
-            {
-                "role": "user",
-                "content": [
-                    {
-                        "image_url": {
-                            "url": "",
-                        },
-                        "type": "image_url",
-                    },
-                ],
-            },
-        ],
-        "model": model_id,
-        "stream": True,
-        "stream_options": stream_options,
-    }
-
-    assert request == exp_request
-
-
-def test_format_request_with_empty_content(model, model_id, stream_options):
-    messages = [
-        {
-            "role": "user",
-            "content": [],
-        },
-    ]
-
-    tru_request = model.format_request(messages)
-    exp_request = {
-        "messages": [],
-        "model": model_id,
-        "stream_options": stream_options,
-        "stream": True,
-    }
-
-    assert tru_request == exp_request
-
-
-@pytest.mark.parametrize(
-    ("content", "content_type"),
-    [
-        ({"video": {}}, "video"),
-        ({"document": {}}, "document"),
-        ({"reasoningContent": {}}, "reasoningContent"),
-        ({"other": {}}, "other"),
-    ],
-)
-def test_format_request_with_unsupported_type(model, content, content_type):
-    messages = [
-        {
-            "role": "user",
-            "content": [content],
-        },
-    ]
-
-    with pytest.raises(TypeError, match=f"content_type=<{content_type}> | unsupported type"):
-        model.format_request(messages)
-
-
-class AsyncStreamWrapper:
-    def __init__(self, items: List[Any]):
-        self.items = items
-
-    def __aiter__(self):
-        return self._generator()
-
-    async def _generator(self):
-        for item in self.items:
-            yield item
-
-
-async def mock_streaming_response(items: List[Any]):
-    return AsyncStreamWrapper(items)
-
-
-@pytest.mark.asyncio
-async def test_stream(writer_client, model, model_id):
-    mock_tool_call_1_part_1 = unittest.mock.Mock(index=0)
-    mock_tool_call_2_part_1 = unittest.mock.Mock(index=1)
-    mock_delta_1 = unittest.mock.Mock(
-        content="I'll calculate", tool_calls=[mock_tool_call_1_part_1, mock_tool_call_2_part_1]
-    )
-
-    mock_tool_call_1_part_2 = unittest.mock.Mock(index=0)
-    mock_tool_call_2_part_2 = unittest.mock.Mock(index=1)
-    mock_delta_2 = unittest.mock.Mock(
-        content="that for you", tool_calls=[mock_tool_call_1_part_2, mock_tool_call_2_part_2]
-    )
-
-    mock_delta_3 = unittest.mock.Mock(content="", tool_calls=None)
-
-    mock_event_1 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason=None, delta=mock_delta_1)])
-    mock_event_2 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason=None, delta=mock_delta_2)])
-    mock_event_3 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason="tool_calls", delta=mock_delta_3)])
-    mock_event_4 = unittest.mock.Mock()
-
-    writer_client.chat.chat.return_value = mock_streaming_response(
-        [mock_event_1, mock_event_2, mock_event_3, mock_event_4]
-    )
-
-    request = {
-        "model": model_id,
-        "messages": [{"role": "user", "content": [{"type": "text", "text": "calculate 2+2"}]}],
-    }
-    response = model.stream(request)
-
-    events = [event async for event in response]
-    exp_events = [
-        {"chunk_type": "message_start"},
-        {"chunk_type": "content_block_start", "data_type": "text"},
-        {"chunk_type": "content_block_delta", "data_type": "text", "data": "I'll calculate"},
-        {"chunk_type": "content_block_delta", "data_type": "text", "data": "that for you"},
-        {"chunk_type": "content_block_stop", "data_type": "text"},
-        {"chunk_type": "content_block_start", "data_type": "tool", "data": mock_tool_call_1_part_1},
-        {"chunk_type": "content_block_delta", "data_type": "tool", "data": mock_tool_call_1_part_2},
-        {"chunk_type": "content_block_stop", "data_type": "tool"},
-        {"chunk_type": "content_block_start", "data_type": "tool", "data": mock_tool_call_2_part_1},
-        {"chunk_type": "content_block_delta", "data_type": "tool", "data": mock_tool_call_2_part_2},
-        {"chunk_type": "content_block_stop", "data_type": "tool"},
-        {"chunk_type": "message_stop", "data": "tool_calls"},
-        {"chunk_type": "metadata", "data": mock_event_4.usage},
-    ]
-
-    assert events == exp_events
-    writer_client.chat.chat(**request)
-
-
-@pytest.mark.asyncio
-async def test_stream_empty(writer_client, model, model_id):
-    mock_delta = unittest.mock.Mock(content=None, tool_calls=None)
-    mock_usage = unittest.mock.Mock(prompt_tokens=0, completion_tokens=0, total_tokens=0)
-
-    mock_event_1 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason=None, delta=mock_delta)])
-    mock_event_2 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason="stop", delta=mock_delta)])
-    mock_event_3 = unittest.mock.Mock()
-    mock_event_4 = unittest.mock.Mock(usage=mock_usage)
-
-    writer_client.chat.chat.return_value = mock_streaming_response(
-        [mock_event_1, mock_event_2, mock_event_3, mock_event_4]
-    )
-
-    request = {"model": model_id, "messages": [{"role": "user", "content": []}]}
-    response = model.stream(request)
-
-    events = [event async for event in response]
-    exp_events = [
-        {"chunk_type": "message_start"},
-        {"chunk_type": "content_block_start", "data_type": "text"},
-        {"chunk_type": "content_block_stop", "data_type": "text"},
-        {"chunk_type": "message_stop", "data": "stop"},
-        {"chunk_type": "metadata", "data": mock_usage},
-    ]
-
-    assert events == exp_events
-    writer_client.chat.chat.assert_called_once_with(**request)
-
-
-@pytest.mark.asyncio
-async def test_stream_with_empty_choices(writer_client, model, model_id):
-    mock_delta = unittest.mock.Mock(content="content", tool_calls=None)
-    mock_usage = unittest.mock.Mock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
-
-    mock_event_1 = unittest.mock.Mock(spec=[])
-    mock_event_2 = unittest.mock.Mock(choices=[])
-    mock_event_3 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason=None, delta=mock_delta)])
-    mock_event_4 = unittest.mock.Mock(choices=[unittest.mock.Mock(finish_reason="stop", delta=mock_delta)])
-    mock_event_5 = unittest.mock.Mock(usage=mock_usage)
-
-    writer_client.chat.chat.return_value = mock_streaming_response(
-        [mock_event_1, mock_event_2, mock_event_3, mock_event_4, mock_event_5]
-    )
-
-    request = {"model": model_id, "messages": [{"role": "user", "content": ["test"]}]}
-    response = model.stream(request)
-
-    events = [event async for event in response]
-    exp_events = [
-        {"chunk_type": "message_start"},
-        {"chunk_type": "content_block_start", "data_type": "text"},
-        {"chunk_type": "content_block_delta", "data_type": "text", "data": "content"},
-        {"chunk_type": "content_block_delta", "data_type": "text", "data": "content"},
-        {"chunk_type": "content_block_stop", "data_type": "text"},
-        {"chunk_type": "message_stop", "data": "stop"},
-        {"chunk_type": "metadata", "data": mock_usage},
-    ]
-
-    assert events == exp_events
-    writer_client.chat.chat.assert_called_once_with(**request)
diff --git a/tests/strands/multiagent/a2a/test_executor.py b/tests/strands/multiagent/a2a/test_executor.py
deleted file mode 100644
index a956cb769..000000000
--- a/tests/strands/multiagent/a2a/test_executor.py
+++ /dev/null
@@ -1,254 +0,0 @@
-"""Tests for the StrandsA2AExecutor class."""
-
-from unittest.mock import AsyncMock, MagicMock, patch
-
-import pytest
-from a2a.types import UnsupportedOperationError
-from a2a.utils.errors import ServerError
-
-from strands.agent.agent_result import AgentResult as SAAgentResult
-from strands.multiagent.a2a.executor import StrandsA2AExecutor
-
-
-def test_executor_initialization(mock_strands_agent):
-    """Test that StrandsA2AExecutor initializes correctly."""
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    assert executor.agent == mock_strands_agent
-
-
-@pytest.mark.asyncio
-async def test_execute_streaming_mode_with_data_events(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that execute processes data events correctly in streaming mode."""
-
-    async def mock_stream(user_input):
-        """Mock streaming function that yields data events."""
-        yield {"data": "First chunk"}
-        yield {"data": "Second chunk"}
-        yield {"result": MagicMock(spec=SAAgentResult)}
-
-    # Setup mock agent streaming
-    mock_strands_agent.stream_async = MagicMock(return_value=mock_stream("Test input"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify agent was called with correct input
-    mock_strands_agent.stream_async.assert_called_once_with("Test input")
-
-    # Verify events were enqueued
-    mock_event_queue.enqueue_event.assert_called()
-
-
-@pytest.mark.asyncio
-async def test_execute_streaming_mode_with_result_event(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that execute processes result events correctly in streaming mode."""
-
-    async def mock_stream(user_input):
-        """Mock streaming function that yields only result event."""
-        yield {"result": MagicMock(spec=SAAgentResult)}
-
-    # Setup mock agent streaming
-    mock_strands_agent.stream_async = MagicMock(return_value=mock_stream("Test input"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify agent was called with correct input
-    mock_strands_agent.stream_async.assert_called_once_with("Test input")
-
-    # Verify events were enqueued
-    mock_event_queue.enqueue_event.assert_called()
-
-
-@pytest.mark.asyncio
-async def test_execute_streaming_mode_with_empty_data(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that execute handles empty data events correctly in streaming mode."""
-
-    async def mock_stream(user_input):
-        """Mock streaming function that yields empty data."""
-        yield {"data": ""}
-        yield {"result": MagicMock(spec=SAAgentResult)}
-
-    # Setup mock agent streaming
-    mock_strands_agent.stream_async = MagicMock(return_value=mock_stream("Test input"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify agent was called with correct input
-    mock_strands_agent.stream_async.assert_called_once_with("Test input")
-
-    # Verify events were enqueued
-    mock_event_queue.enqueue_event.assert_called()
-
-
-@pytest.mark.asyncio
-async def test_execute_streaming_mode_with_unexpected_event(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that execute handles unexpected events correctly in streaming mode."""
-
-    async def mock_stream(user_input):
-        """Mock streaming function that yields unexpected event."""
-        yield {"unexpected": "event"}
-        yield {"result": MagicMock(spec=SAAgentResult)}
-
-    # Setup mock agent streaming
-    mock_strands_agent.stream_async = MagicMock(return_value=mock_stream("Test input"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify agent was called with correct input
-    mock_strands_agent.stream_async.assert_called_once_with("Test input")
-
-    # Verify events were enqueued
-    mock_event_queue.enqueue_event.assert_called()
-
-
-@pytest.mark.asyncio
-async def test_execute_creates_task_when_none_exists(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that execute creates a new task when none exists."""
-
-    async def mock_stream(user_input):
-        """Mock streaming function that yields data events."""
-        yield {"data": "Test chunk"}
-        yield {"result": MagicMock(spec=SAAgentResult)}
-
-    # Setup mock agent streaming
-    mock_strands_agent.stream_async = MagicMock(return_value=mock_stream("Test input"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock no existing task
-    mock_request_context.current_task = None
-
-    with patch("strands.multiagent.a2a.executor.new_task") as mock_new_task:
-        mock_new_task.return_value = MagicMock(id="new-task-id", contextId="new-context-id")
-
-        await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify task creation and completion events were enqueued
-    assert mock_event_queue.enqueue_event.call_count >= 1
-    mock_new_task.assert_called_once()
-
-
-@pytest.mark.asyncio
-async def test_execute_streaming_mode_handles_agent_exception(
-    mock_strands_agent, mock_request_context, mock_event_queue
-):
-    """Test that execute handles agent exceptions correctly in streaming mode."""
-
-    # Setup mock agent to raise exception when stream_async is called
-    mock_strands_agent.stream_async = MagicMock(side_effect=Exception("Agent error"))
-
-    # Create executor
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    with pytest.raises(ServerError):
-        await executor.execute(mock_request_context, mock_event_queue)
-
-    # Verify agent was called
-    mock_strands_agent.stream_async.assert_called_once_with("Test input")
-
-
-@pytest.mark.asyncio
-async def test_cancel_raises_unsupported_operation_error(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that cancel raises UnsupportedOperationError."""
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    with pytest.raises(ServerError) as excinfo:
-        await executor.cancel(mock_request_context, mock_event_queue)
-
-    # Verify the error is a ServerError containing an UnsupportedOperationError
-    assert isinstance(excinfo.value.error, UnsupportedOperationError)
-
-
-@pytest.mark.asyncio
-async def test_handle_agent_result_with_none_result(mock_strands_agent, mock_request_context, mock_event_queue):
-    """Test that _handle_agent_result handles None result correctly."""
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    # Mock TaskUpdater
-    mock_updater = MagicMock()
-    mock_updater.complete = AsyncMock()
-    mock_updater.add_artifact = AsyncMock()
-
-    # Call _handle_agent_result with None
-    await executor._handle_agent_result(None, mock_updater)
-
-    # Verify completion was called
-    mock_updater.complete.assert_called_once()
-
-
-@pytest.mark.asyncio
-async def test_handle_agent_result_with_result_but_no_message(
-    mock_strands_agent, mock_request_context, mock_event_queue
-):
-    """Test that _handle_agent_result handles result with no message correctly."""
-    executor = StrandsA2AExecutor(mock_strands_agent)
-
-    # Mock the task creation
-    mock_task = MagicMock()
-    mock_task.id = "test-task-id"
-    mock_task.contextId = "test-context-id"
-    mock_request_context.current_task = mock_task
-
-    # Mock TaskUpdater
-    mock_updater = MagicMock()
-    mock_updater.complete = AsyncMock()
-    mock_updater.add_artifact = AsyncMock()
-
-    # Create result with no message
-    mock_result = MagicMock(spec=SAAgentResult)
-    mock_result.message = None
-
-    # Call _handle_agent_result
-    await executor._handle_agent_result(mock_result, mock_updater)
-
-    # Verify completion was called
-    mock_updater.complete.assert_called_once()
diff --git a/tests/strands/telemetry/test_tracer.py b/tests/strands/telemetry/test_tracer.py
index 7623085f2..2fcd98c39 100644
--- a/tests/strands/telemetry/test_tracer.py
+++ b/tests/strands/telemetry/test_tracer.py
@@ -276,17 +276,17 @@ def test_start_agent_span(mock_tracer):
         mock_span = mock.MagicMock()
         mock_tracer.start_span.return_value = mock_span
 
-        content = [{"text": "test prompt"}]
+        prompt = "What's the weather today?"
         model_id = "test-model"
         tools = [{"name": "weather_tool"}]
         custom_attrs = {"custom_attr": "value"}
 
         span = tracer.start_agent_span(
-            custom_trace_attributes=custom_attrs,
+            prompt=prompt,
             agent_name="WeatherAgent",
-            message={"content": content, "role": "user"},
             model_id=model_id,
             tools=tools,
+            custom_trace_attributes=custom_attrs,
         )
 
         mock_tracer.start_span.assert_called_once()
@@ -295,7 +295,7 @@ def test_start_agent_span(mock_tracer):
         mock_span.set_attribute.assert_any_call("gen_ai.agent.name", "WeatherAgent")
         mock_span.set_attribute.assert_any_call("gen_ai.request.model", model_id)
         mock_span.set_attribute.assert_any_call("custom_attr", "value")
-        mock_span.add_event.assert_any_call("gen_ai.user.message", attributes={"content": json.dumps(content)})
+        mock_span.add_event.assert_any_call("gen_ai.user.message", attributes={"content": prompt})
         assert span is not None
 
 
diff --git a/tests/strands/tools/mcp/test_mcp_agent_tool.py b/tests/strands/tools/mcp/test_mcp_agent_tool.py
index b00bf4cc9..eba4ad6c2 100644
--- a/tests/strands/tools/mcp/test_mcp_agent_tool.py
+++ b/tests/strands/tools/mcp/test_mcp_agent_tool.py
@@ -57,14 +57,12 @@ def test_tool_spec_without_description(mock_mcp_tool, mock_mcp_client):
     assert tool_spec["description"] == "Tool which performs test_tool"
 
 
-@pytest.mark.asyncio
-async def test_stream(mcp_agent_tool, mock_mcp_client, alist):
+def test_invoke(mcp_agent_tool, mock_mcp_client):
     tool_use = {"toolUseId": "test-123", "name": "test_tool", "input": {"param": "value"}}
 
-    tru_events = await alist(mcp_agent_tool.stream(tool_use, {}))
-    exp_events = [mock_mcp_client.call_tool_sync.return_value]
+    result = mcp_agent_tool.invoke(tool_use)
 
-    assert tru_events == exp_events
     mock_mcp_client.call_tool_sync.assert_called_once_with(
         tool_use_id="test-123", name="test_tool", arguments={"param": "value"}
     )
+    assert result == mock_mcp_client.call_tool_sync.return_value
diff --git a/tests/strands/tools/test_decorator.py b/tests/strands/tools/test_decorator.py
index 52a9282e0..50333474c 100644
--- a/tests/strands/tools/test_decorator.py
+++ b/tests/strands/tools/test_decorator.py
@@ -5,139 +5,14 @@
 from typing import Any, Dict, Optional, Union
 from unittest.mock import MagicMock
 
-import pytest
-
-import strands
+from strands.tools.decorator import tool
 from strands.types.tools import ToolUse
 
 
-@pytest.fixture(scope="module")
-def identity_invoke():
-    @strands.tool
-    def identity(a: int):
-        return a
-
-    return identity
-
-
-@pytest.fixture(scope="module")
-def identity_invoke_async():
-    @strands.tool
-    async def identity(a: int):
-        return a
-
-    return identity
-
-
-@pytest.fixture
-def identity_tool(request):
-    return request.getfixturevalue(request.param)
-
-
-def test__init__invalid_name():
-    with pytest.raises(ValueError, match="Tool name must be a string"):
-
-        @strands.tool(name=0)
-        def identity(a):
-            return a
-
-
-def test_tool_func_not_decorated():
-    def identity(a: int):
-        return a
-
-    tool = strands.tool(func=identity, name="identity")
-
-    tru_name = tool._tool_func.__name__
-    exp_name = "identity"
-
-    assert tru_name == exp_name
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_name(identity_tool):
-    tru_name = identity_tool.tool_name
-    exp_name = "identity"
-
-    assert tru_name == exp_name
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_spec(identity_tool):
-    tru_spec = identity_tool.tool_spec
-    exp_spec = {
-        "name": "identity",
-        "description": "identity",
-        "inputSchema": {
-            "json": {
-                "type": "object",
-                "properties": {
-                    "a": {
-                        "description": "Parameter a",
-                        "type": "integer",
-                    },
-                },
-                "required": ["a"],
-            }
-        },
-    }
-    assert tru_spec == exp_spec
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_type(identity_tool):
-    tru_type = identity_tool.tool_type
-    exp_type = "function"
-
-    assert tru_type == exp_type
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_supports_hot_reload(identity_tool):
-    assert identity_tool.supports_hot_reload
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_get_display_properties(identity_tool):
-    tru_properties = identity_tool.get_display_properties()
-    exp_properties = {
-        "Function": "identity",
-        "Name": "identity",
-        "Type": "function",
-    }
-
-    assert tru_properties == exp_properties
-
-
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-@pytest.mark.asyncio
-async def test_stream(identity_tool, alist):
-    stream = identity_tool.stream({"toolUseId": "t1", "input": {"a": 2}}, {})
-
-    tru_events = await alist(stream)
-    exp_events = [{"toolUseId": "t1", "status": "success", "content": [{"text": "2"}]}]
-
-    assert tru_events == exp_events
-
-
-@pytest.mark.asyncio
-async def test_stream_with_agent(alist):
-    @strands.tool
-    def identity(a: int, agent: dict = None):
-        return a, agent
-
-    stream = identity.stream({"input": {"a": 2}}, {"agent": {"state": 1}})
-
-    tru_events = await alist(stream)
-    exp_events = [{"toolUseId": "unknown", "status": "success", "content": [{"text": "(2, {'state': 1})"}]}]
-    assert tru_events == exp_events
-
-
-@pytest.mark.asyncio
-async def test_basic_tool_creation(alist):
+def test_basic_tool_creation():
     """Test basic tool decorator functionality."""
 
-    @strands.tool
+    @tool
     def test_tool(param1: str, param2: int) -> str:
         """Test tool function.
 
@@ -175,21 +50,20 @@ def test_tool(param1: str, param2: int) -> str:
 
     # Test actual usage
     tool_use = {"toolUseId": "test-id", "input": {"param1": "hello", "param2": 42}}
-    stream = test_tool.stream(tool_use, {})
-
-    tru_events = await alist(stream)
-    exp_events = [{"toolUseId": "test-id", "status": "success", "content": [{"text": "Result: hello 42"}]}]
-    assert tru_events == exp_events
+    result = test_tool.invoke(tool_use)
+    assert result["toolUseId"] == "test-id"
+    assert result["status"] == "success"
+    assert result["content"][0]["text"] == "Result: hello 42"
 
     # Make sure these are set properly
     assert test_tool.__wrapped__ is not None
-    assert test_tool.__doc__ == test_tool._tool_func.__doc__
+    assert test_tool.__doc__ == test_tool.original_function.__doc__
 
 
 def test_tool_with_custom_name_description():
     """Test tool decorator with custom name and description."""
 
-    @strands.tool(name="custom_name", description="Custom description")
+    @tool(name="custom_name", description="Custom description")
     def test_tool(param: str) -> str:
         return f"Result: {param}"
 
@@ -199,11 +73,10 @@ def test_tool(param: str) -> str:
     assert spec["description"] == "Custom description"
 
 
-@pytest.mark.asyncio
-async def test_tool_with_optional_params(alist):
+def test_tool_with_optional_params():
     """Test tool decorator with optional parameters."""
 
-    @strands.tool
+    @tool
     def test_tool(required: str, optional: Optional[int] = None) -> str:
         """Test with optional param.
 
@@ -224,25 +97,23 @@ def test_tool(required: str, optional: Optional[int] = None) -> str:
 
     # Test with only required param
     tool_use = {"toolUseId": "test-id", "input": {"required": "hello"}}
-    stream = test_tool.stream(tool_use, {})
 
-    tru_events = await alist(stream)
-    exp_events = [{"toolUseId": "test-id", "status": "success", "content": [{"text": "Result: hello"}]}]
-    assert tru_events == exp_events
+    result = test_tool.invoke(tool_use)
+    assert result["status"] == "success"
+    assert result["content"][0]["text"] == "Result: hello"
 
     # Test with both params
     tool_use = {"toolUseId": "test-id", "input": {"required": "hello", "optional": 42}}
-    stream = test_tool.stream(tool_use, {})
 
-    tru_events = await alist(stream)
-    exp_events = [{"toolUseId": "test-id", "status": "success", "content": [{"text": "Result: hello 42"}]}]
+    result = test_tool.invoke(tool_use)
+    assert result["status"] == "success"
+    assert result["content"][0]["text"] == "Result: hello 42"
 
 
-@pytest.mark.asyncio
-async def test_tool_error_handling(alist):
+def test_tool_error_handling():
     """Test error handling in tool decorator."""
 
-    @strands.tool
+    @tool
     def test_tool(required: str) -> str:
         """Test tool function."""
         if required == "error":
@@ -251,9 +122,8 @@ def test_tool(required: str) -> str:
 
     # Test with missing required param
     tool_use = {"toolUseId": "test-id", "input": {}}
-    stream = test_tool.stream(tool_use, {})
 
-    result = (await alist(stream))[-1]
+    result = test_tool.invoke(tool_use)
     assert result["status"] == "error"
     assert "validation error for test_tooltool\nrequired\n" in result["content"][0]["text"].lower(), (
         "Validation error should indicate which argument is missing"
@@ -261,9 +131,8 @@ def test_tool(required: str) -> str:
 
     # Test with exception in tool function
     tool_use = {"toolUseId": "test-id", "input": {"required": "error"}}
-    stream = test_tool.stream(tool_use, {})
 
-    result = (await alist(stream))[-1]
+    result = test_tool.invoke(tool_use)
     assert result["status"] == "error"
     assert "test error" in result["content"][0]["text"].lower(), (
         "Runtime error should contain the original error message"
@@ -273,7 +142,7 @@ def test_tool(required: str) -> str:
 def test_type_handling():
     """Test handling of basic parameter types."""
 
-    @strands.tool
+    @tool
     def test_tool(
         str_param: str,
         int_param: int,
@@ -293,12 +162,11 @@ def test_tool(
     assert props["bool_param"]["type"] == "boolean"
 
 
-@pytest.mark.asyncio
-async def test_agent_parameter_passing(alist):
+def test_agent_parameter_passing():
     """Test passing agent parameter to tool function."""
     mock_agent = MagicMock()
 
-    @strands.tool
+    @tool
     def test_tool(param: str, agent=None) -> str:
         """Test tool with agent parameter."""
         if agent:
@@ -308,74 +176,85 @@ def test_tool(param: str, agent=None) -> str:
     tool_use = {"toolUseId": "test-id", "input": {"param": "test"}}
 
     # Test without agent
-    stream = test_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = test_tool.invoke(tool_use)
     assert result["content"][0]["text"] == "Param: test"
 
     # Test with agent
-    stream = test_tool.stream(tool_use, {"agent": mock_agent})
+    result = test_tool.invoke(tool_use, agent=mock_agent)
+    assert "Agent:" in result["content"][0]["text"]
+    assert "test" in result["content"][0]["text"]
+
+
+def test_agent_backwards_compatability_parameter_passing():
+    """Test passing agent parameter to tool function."""
+    mock_agent = MagicMock()
+
+    @tool
+    def test_tool(param: str, agent=None) -> str:
+        """Test tool with agent parameter."""
+        if agent:
+            return f"Agent: {agent}, Param: {param}"
+        return f"Param: {param}"
 
-    result = (await alist(stream))[-1]
+    tool_use = {"toolUseId": "test-id", "input": {"param": "test"}}
+
+    # Test without agent
+    result = test_tool(tool_use)
+    assert result["content"][0]["text"] == "Param: test"
+
+    # Test with agent
+    result = test_tool(tool_use, agent=mock_agent)
     assert "Agent:" in result["content"][0]["text"]
     assert "test" in result["content"][0]["text"]
 
 
-@pytest.mark.asyncio
-async def test_tool_decorator_with_different_return_values(alist):
+def test_tool_decorator_with_different_return_values():
     """Test tool decorator with different return value types."""
 
     # Test with dict return that follows ToolResult format
-    @strands.tool
+    @tool
     def dict_return_tool(param: str) -> dict:
         """Test tool that returns a dict in ToolResult format."""
         return {"status": "success", "content": [{"text": f"Result: {param}"}]}
 
     # Test with non-dict return
-    @strands.tool
+    @tool
     def string_return_tool(param: str) -> str:
         """Test tool that returns a string."""
         return f"Result: {param}"
 
     # Test with None return
-    @strands.tool
+    @tool
     def none_return_tool(param: str) -> None:
         """Test tool that returns None."""
         pass
 
     # Test the dict return - should preserve dict format but add toolUseId
     tool_use: ToolUse = {"toolUseId": "test-id", "input": {"param": "test"}}
-    stream = dict_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = dict_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "Result: test"
     assert result["toolUseId"] == "test-id"
 
     # Test the string return - should wrap in standard format
-    stream = string_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = string_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "Result: test"
 
     # Test None return - should still create valid ToolResult with "None" text
-    stream = none_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = none_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "None"
 
 
-@pytest.mark.asyncio
-async def test_class_method_handling(alist):
+def test_class_method_handling():
     """Test handling of class methods with tool decorator."""
 
     class TestClass:
         def __init__(self, prefix):
             self.prefix = prefix
 
-        @strands.tool
+        @tool
         def test_method(self, param: str) -> str:
             """Test method.
 
@@ -398,15 +277,12 @@ def test_method(self, param: str) -> str:
 
     # Test tool-style call
     tool_use = {"toolUseId": "test-id", "input": {"param": "tool-value"}}
-    stream = instance.test_method.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = instance.test_method.invoke(tool_use)
     assert "Test: tool-value" in result["content"][0]["text"]
 
 
-@pytest.mark.asyncio
-async def test_tool_as_adhoc_field(alist):
-    @strands.tool
+def test_tool_as_adhoc_field():
+    @tool
     def test_method(param: str) -> str:
         return f"param: {param}"
 
@@ -418,18 +294,16 @@ class MyThing: ...
     result = instance.field("example")
     assert result == "param: example"
 
-    stream = instance.field.stream({"toolUseId": "test-id", "input": {"param": "example"}}, {})
-    result2 = (await alist(stream))[-1]
+    result2 = instance.field.invoke({"toolUseId": "test-id", "input": {"param": "example"}})
     assert result2 == {"content": [{"text": "param: example"}], "status": "success", "toolUseId": "test-id"}
 
 
-@pytest.mark.asyncio
-async def test_tool_as_instance_field(alist):
+def test_tool_as_instance_field():
     """Make sure that class instance properties operate correctly."""
 
     class MyThing:
         def __init__(self):
-            @strands.tool
+            @tool
             def test_method(param: str) -> str:
                 return f"param: {param}"
 
@@ -440,16 +314,14 @@ def test_method(param: str) -> str:
     result = instance.field("example")
     assert result == "param: example"
 
-    stream = instance.field.stream({"toolUseId": "test-id", "input": {"param": "example"}}, {})
-    result2 = (await alist(stream))[-1]
+    result2 = instance.field.invoke({"toolUseId": "test-id", "input": {"param": "example"}})
     assert result2 == {"content": [{"text": "param: example"}], "status": "success", "toolUseId": "test-id"}
 
 
-@pytest.mark.asyncio
-async def test_default_parameter_handling(alist):
+def test_default_parameter_handling():
     """Test handling of parameters with default values."""
 
-    @strands.tool
+    @tool
     def tool_with_defaults(required: str, optional: str = "default", number: int = 42) -> str:
         """Test tool with multiple default parameters.
 
@@ -469,46 +341,38 @@ def tool_with_defaults(required: str, optional: str = "default", number: int = 4
 
     # Call with just required parameter
     tool_use = {"toolUseId": "test-id", "input": {"required": "hello"}}
-    stream = tool_with_defaults.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = tool_with_defaults.invoke(tool_use)
     assert result["content"][0]["text"] == "hello default 42"
 
     # Call with some but not all optional parameters
     tool_use = {"toolUseId": "test-id", "input": {"required": "hello", "number": 100}}
-    stream = tool_with_defaults.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = tool_with_defaults.invoke(tool_use)
     assert result["content"][0]["text"] == "hello default 100"
 
 
-@pytest.mark.asyncio
-async def test_empty_tool_use_handling(alist):
+def test_empty_tool_use_handling():
     """Test handling of empty tool use dictionaries."""
 
-    @strands.tool
+    @tool
     def test_tool(required: str) -> str:
         """Test with a required parameter."""
         return f"Got: {required}"
 
     # Test with completely empty tool use
-    stream = test_tool.stream({}, {})
-    result = (await alist(stream))[-1]
+    result = test_tool.invoke({})
     assert result["status"] == "error"
     assert "unknown" in result["toolUseId"]
 
     # Test with missing input
-    stream = test_tool.stream({"toolUseId": "test-id"}, {})
-    result = (await alist(stream))[-1]
+    result = test_tool.invoke({"toolUseId": "test-id"})
     assert result["status"] == "error"
     assert "test-id" in result["toolUseId"]
 
 
-@pytest.mark.asyncio
-async def test_traditional_function_call(alist):
+def test_traditional_function_call():
     """Test that decorated functions can still be called normally."""
 
-    @strands.tool
+    @tool
     def add_numbers(a: int, b: int) -> int:
         """Add two numbers.
 
@@ -524,18 +388,15 @@ def add_numbers(a: int, b: int) -> int:
 
     # Call through tool interface
     tool_use = {"toolUseId": "test-id", "input": {"a": 2, "b": 3}}
-    stream = add_numbers.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = add_numbers.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "5"
 
 
-@pytest.mark.asyncio
-async def test_multiple_default_parameters(alist):
+def test_multiple_default_parameters():
     """Test handling of multiple parameters with default values."""
 
-    @strands.tool
+    @tool
     def multi_default_tool(
         required_param: str,
         optional_str: str = "default_str",
@@ -560,9 +421,7 @@ def multi_default_tool(
 
     # Test calling with only required parameter
     tool_use = {"toolUseId": "test-id", "input": {"required_param": "hello"}}
-    stream = multi_default_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = multi_default_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "hello, default_str, 42, True, 3.14" in result["content"][0]["text"]
 
@@ -571,18 +430,15 @@ def multi_default_tool(
         "toolUseId": "test-id",
         "input": {"required_param": "hello", "optional_int": 100, "optional_float": 2.718},
     }
-    stream = multi_default_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = multi_default_tool.invoke(tool_use)
     assert "hello, default_str, 100, True, 2.718" in result["content"][0]["text"]
 
 
-@pytest.mark.asyncio
-async def test_return_type_validation(alist):
+def test_return_type_validation():
     """Test that return types are properly handled and validated."""
 
     # Define tool with explicitly typed return
-    @strands.tool
+    @tool
     def int_return_tool(param: str) -> int:
         """Tool that returns an integer.
 
@@ -598,9 +454,7 @@ def int_return_tool(param: str) -> int:
 
     # Test with return that matches declared type
     tool_use = {"toolUseId": "test-id", "input": {"param": "valid"}}
-    stream = int_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = int_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "42"
 
@@ -608,22 +462,18 @@ def int_return_tool(param: str) -> int:
     # Note: This should still work because Python doesn't enforce return types at runtime
     # but the function will return a string instead of an int
     tool_use = {"toolUseId": "test-id", "input": {"param": "invalid_type"}}
-    stream = int_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = int_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "not an int"
 
     # Test with None return from a non-None return type
     tool_use = {"toolUseId": "test-id", "input": {"param": "none"}}
-    stream = int_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = int_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "None"
 
     # Define tool with Union return type
-    @strands.tool
+    @tool
     def union_return_tool(param: str) -> Union[Dict[str, Any], str, None]:
         """Tool with Union return type.
 
@@ -639,32 +489,25 @@ def union_return_tool(param: str) -> Union[Dict[str, Any], str, None]:
 
     # Test with each possible return type in the Union
     tool_use = {"toolUseId": "test-id", "input": {"param": "dict"}}
-    stream = union_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = union_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "{'key': 'value'}" in result["content"][0]["text"] or '{"key": "value"}' in result["content"][0]["text"]
 
     tool_use = {"toolUseId": "test-id", "input": {"param": "str"}}
-    stream = union_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = union_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "string result"
 
     tool_use = {"toolUseId": "test-id", "input": {"param": "none"}}
-    stream = union_return_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = union_return_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "None"
 
 
-@pytest.mark.asyncio
-async def test_tool_with_no_parameters(alist):
+def test_tool_with_no_parameters():
     """Test a tool that doesn't require any parameters."""
 
-    @strands.tool
+    @tool
     def no_params_tool() -> str:
         """A tool that doesn't need any parameters."""
         return "Success - no parameters needed"
@@ -677,9 +520,7 @@ def no_params_tool() -> str:
 
     # Test tool use call
     tool_use = {"toolUseId": "test-id", "input": {}}
-    stream = no_params_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = no_params_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "Success - no parameters needed"
 
@@ -688,11 +529,10 @@ def no_params_tool() -> str:
     assert direct_result == "Success - no parameters needed"
 
 
-@pytest.mark.asyncio
-async def test_complex_parameter_types(alist):
+def test_complex_parameter_types():
     """Test handling of complex parameter types like nested dictionaries."""
 
-    @strands.tool
+    @tool
     def complex_type_tool(config: Dict[str, Any]) -> str:
         """Tool with complex parameter type.
 
@@ -706,9 +546,7 @@ def complex_type_tool(config: Dict[str, Any]) -> str:
 
     # Call via tool use
     tool_use = {"toolUseId": "test-id", "input": {"config": nested_dict}}
-    stream = complex_type_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = complex_type_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "Got config with 3 keys" in result["content"][0]["text"]
 
@@ -717,11 +555,10 @@ def complex_type_tool(config: Dict[str, Any]) -> str:
     assert direct_result == "Got config with 3 keys"
 
 
-@pytest.mark.asyncio
-async def test_custom_tool_result_handling(alist):
+def test_custom_tool_result_handling():
     """Test that a function returning a properly formatted tool result dictionary is handled correctly."""
 
-    @strands.tool
+    @tool
     def custom_result_tool(param: str) -> Dict[str, Any]:
         """Tool that returns a custom tool result dictionary.
 
@@ -736,10 +573,9 @@ def custom_result_tool(param: str) -> Dict[str, Any]:
 
     # Test via tool use
     tool_use = {"toolUseId": "custom-id", "input": {"param": "test"}}
-    stream = custom_result_tool.stream(tool_use, {})
+    result = custom_result_tool.invoke(tool_use)
 
     # The wrapper should preserve our format and just add the toolUseId
-    result = (await alist(stream))[-1]
     assert result["status"] == "success"
     assert result["toolUseId"] == "custom-id"
     assert len(result["content"]) == 2
@@ -751,7 +587,7 @@ def custom_result_tool(param: str) -> Dict[str, Any]:
 def test_docstring_parsing():
     """Test that function docstring is correctly parsed into tool spec."""
 
-    @strands.tool
+    @tool
     def documented_tool(param1: str, param2: int = 10) -> str:
         """This is the summary line.
 
@@ -787,11 +623,10 @@ def documented_tool(param1: str, param2: int = 10) -> str:
     assert "param2" not in schema["required"]
 
 
-@pytest.mark.asyncio
-async def test_detailed_validation_errors(alist):
+def test_detailed_validation_errors():
     """Test detailed error messages for various validation failures."""
 
-    @strands.tool
+    @tool
     def validation_tool(str_param: str, int_param: int, bool_param: bool) -> str:
         """Tool with various parameter types for validation testing.
 
@@ -811,9 +646,7 @@ def validation_tool(str_param: str, int_param: int, bool_param: bool) -> str:
             "bool_param": True,
         },
     }
-    stream = validation_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = validation_tool.invoke(tool_use)
     assert result["status"] == "error"
     assert "int_param" in result["content"][0]["text"]
 
@@ -826,20 +659,17 @@ def validation_tool(str_param: str, int_param: int, bool_param: bool) -> str:
             "bool_param": True,
         },
     }
-    stream = validation_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = validation_tool.invoke(tool_use)
     assert result["status"] == "error"
     assert "int_param" in result["content"][0]["text"]
 
 
-@pytest.mark.asyncio
-async def test_tool_complex_validation_edge_cases(alist):
+def test_tool_complex_validation_edge_cases():
     """Test validation of complex schema edge cases."""
     from typing import Any, Dict, Union
 
     # Define a tool with a complex anyOf type that could trigger edge case handling
-    @strands.tool
+    @tool
     def edge_case_tool(param: Union[Dict[str, Any], None]) -> str:
         """Tool with complex anyOf structure.
 
@@ -850,38 +680,31 @@ def edge_case_tool(param: Union[Dict[str, Any], None]) -> str:
 
     # Test with None value
     tool_use = {"toolUseId": "test-id", "input": {"param": None}}
-    stream = edge_case_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = edge_case_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "None"
 
     # Test with empty dict
     tool_use = {"toolUseId": "test-id", "input": {"param": {}}}
-    stream = edge_case_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = edge_case_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert result["content"][0]["text"] == "{}"
 
     # Test with a complex nested dictionary
     nested_dict = {"key1": {"nested": [1, 2, 3]}, "key2": None}
     tool_use = {"toolUseId": "test-id", "input": {"param": nested_dict}}
-    stream = edge_case_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = edge_case_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "key1" in result["content"][0]["text"]
     assert "nested" in result["content"][0]["text"]
 
 
-@pytest.mark.asyncio
-async def test_tool_method_detection_errors(alist):
+def test_tool_method_detection_errors():
     """Test edge cases in method detection logic."""
 
     # Define a class with a decorated method to test exception handling in method detection
     class TestClass:
-        @strands.tool
+        @tool
         def test_method(self, param: str) -> str:
             """Test method that should be called properly despite errors.
 
@@ -917,14 +740,12 @@ def test_method(self):
     assert instance.test_method("test") == "Method Got: test"
 
     # Test direct function call
-    stream = instance.test_method.stream({"toolUseId": "test-id", "input": {"param": "direct"}}, {})
-
-    direct_result = (await alist(stream))[-1]
+    direct_result = instance.test_method.invoke({"toolUseId": "test-id", "input": {"param": "direct"}})
     assert direct_result["status"] == "success"
     assert direct_result["content"][0]["text"] == "Method Got: direct"
 
     # Create a standalone function to test regular function calls
-    @strands.tool
+    @tool
     def standalone_tool(p1: str, p2: str = "default") -> str:
         """Standalone tool for testing.
 
@@ -939,18 +760,15 @@ def standalone_tool(p1: str, p2: str = "default") -> str:
     assert result == "Standalone: param1, param2"
 
     # And that it works with tool use call too
-    stream = standalone_tool.stream({"toolUseId": "test-id", "input": {"p1": "value1"}}, {})
-
-    tool_use_result = (await alist(stream))[-1]
+    tool_use_result = standalone_tool.invoke({"toolUseId": "test-id", "input": {"p1": "value1"}})
     assert tool_use_result["status"] == "success"
     assert tool_use_result["content"][0]["text"] == "Standalone: value1, default"
 
 
-@pytest.mark.asyncio
-async def test_tool_general_exception_handling(alist):
+def test_tool_general_exception_handling():
     """Test handling of arbitrary exceptions in tool execution."""
 
-    @strands.tool
+    @tool
     def failing_tool(param: str) -> str:
         """Tool that raises different exception types.
 
@@ -971,9 +789,7 @@ def failing_tool(param: str) -> str:
     error_types = ["value_error", "type_error", "attribute_error", "key_error"]
     for error_type in error_types:
         tool_use = {"toolUseId": "test-id", "input": {"param": error_type}}
-        stream = failing_tool.stream(tool_use, {})
-
-        result = (await alist(stream))[-1]
+        result = failing_tool.invoke(tool_use)
         assert result["status"] == "error"
 
         error_message = result["content"][0]["text"]
@@ -990,12 +806,11 @@ def failing_tool(param: str) -> str:
             assert "key_name" in error_message
 
 
-@pytest.mark.asyncio
-async def test_tool_with_complex_anyof_schema(alist):
+def test_tool_with_complex_anyof_schema():
     """Test handling of complex anyOf structures in the schema."""
     from typing import Any, Dict, List, Union
 
-    @strands.tool
+    @tool
     def complex_schema_tool(union_param: Union[List[int], Dict[str, Any], str, None]) -> str:
         """Tool with a complex Union type that creates anyOf in schema.
 
@@ -1006,33 +821,25 @@ def complex_schema_tool(union_param: Union[List[int], Dict[str, Any], str, None]
 
     # Test with a list
     tool_use = {"toolUseId": "test-id", "input": {"union_param": [1, 2, 3]}}
-    stream = complex_schema_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = complex_schema_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "list: [1, 2, 3]" in result["content"][0]["text"]
 
     # Test with a dict
     tool_use = {"toolUseId": "test-id", "input": {"union_param": {"key": "value"}}}
-    stream = complex_schema_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = complex_schema_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "dict:" in result["content"][0]["text"]
     assert "key" in result["content"][0]["text"]
 
     # Test with a string
     tool_use = {"toolUseId": "test-id", "input": {"union_param": "test_string"}}
-    stream = complex_schema_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = complex_schema_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "str: test_string" in result["content"][0]["text"]
 
     # Test with None
     tool_use = {"toolUseId": "test-id", "input": {"union_param": None}}
-    stream = complex_schema_tool.stream(tool_use, {})
-
-    result = (await alist(stream))[-1]
+    result = complex_schema_tool.invoke(tool_use)
     assert result["status"] == "success"
     assert "NoneType: None" in result["content"][0]["text"]
diff --git a/tests/strands/tools/test_executor.py b/tests/strands/tools/test_executor.py
index 04d4ea657..d3e934acc 100644
--- a/tests/strands/tools/test_executor.py
+++ b/tests/strands/tools/test_executor.py
@@ -1,3 +1,4 @@
+import concurrent
 import unittest.mock
 import uuid
 
@@ -15,9 +16,9 @@ def moto_autouse(moto_env):
 
 @pytest.fixture
 def tool_handler(request):
-    async def handler(tool_use):
+    def handler(tool_use):
         yield {"event": "abc"}
-        yield {
+        return {
             **params,
             "toolUseId": tool_use["toolUseId"],
         }
@@ -64,14 +65,18 @@ def cycle_trace():
         return strands.telemetry.metrics.Trace(name="test trace", raw_name="raw_name")
 
 
-@pytest.mark.asyncio
-async def test_run_tools(
+@pytest.fixture
+def thread_pool(request):
+    return concurrent.futures.ThreadPoolExecutor(max_workers=1)
+
+
+def test_run_tools(
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
     tool_results = []
 
@@ -82,11 +87,14 @@ async def test_run_tools(
         invalid_tool_use_ids,
         tool_results,
         cycle_trace,
+        thread_pool,
     )
 
-    tru_events = await alist(stream)
-    exp_events = [
-        {"event": "abc"},
+    tru_events = list(stream)
+    exp_events = [{"event": "abc"}]
+
+    tru_results = tool_results
+    exp_results = [
         {
             "content": [
                 {
@@ -98,21 +106,17 @@ async def test_run_tools(
         },
     ]
 
-    tru_results = tool_results
-    exp_results = [exp_events[-1]]
-
     assert tru_events == exp_events and tru_results == exp_results
 
 
 @pytest.mark.parametrize("invalid_tool_use_ids", [["t1"]], indirect=True)
-@pytest.mark.asyncio
-async def test_run_tools_invalid_tool(
+def test_run_tools_invalid_tool(
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
     tool_results = []
 
@@ -123,8 +127,9 @@ async def test_run_tools_invalid_tool(
         invalid_tool_use_ids,
         tool_results,
         cycle_trace,
+        thread_pool,
     )
-    await alist(stream)
+    list(stream)
 
     tru_results = tool_results
     exp_results = []
@@ -133,14 +138,13 @@ async def test_run_tools_invalid_tool(
 
 
 @pytest.mark.parametrize("tool_handler", [{"status": "failed"}], indirect=True)
-@pytest.mark.asyncio
-async def test_run_tools_failed_tool(
+def test_run_tools_failed_tool(
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
     tool_results = []
 
@@ -151,8 +155,9 @@ async def test_run_tools_failed_tool(
         invalid_tool_use_ids,
         tool_results,
         cycle_trace,
+        thread_pool,
     )
-    await alist(stream)
+    list(stream)
 
     tru_results = tool_results
     exp_results = [
@@ -191,14 +196,12 @@ async def test_run_tools_failed_tool(
     ],
     indirect=True,
 )
-@pytest.mark.asyncio
-async def test_run_tools_sequential(
+def test_run_tools_sequential(
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
 ):
     tool_results = []
 
@@ -211,7 +214,7 @@ async def test_run_tools_sequential(
         cycle_trace,
         None,  # tool_pool
     )
-    await alist(stream)
+    list(stream)
 
     tru_results = tool_results
     exp_results = [
@@ -278,8 +281,7 @@ def test_validate_and_prepare_tools():
 
 
 @unittest.mock.patch("strands.tools.executor.get_tracer")
-@pytest.mark.asyncio
-async def test_run_tools_creates_and_ends_span_on_success(
+def test_run_tools_creates_and_ends_span_on_success(
     mock_get_tracer,
     tool_handler,
     tool_uses,
@@ -287,7 +289,7 @@ async def test_run_tools_creates_and_ends_span_on_success(
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
     """Test that run_tools creates and ends a span on successful execution."""
     # Setup mock tracer and span
@@ -310,8 +312,9 @@ async def test_run_tools_creates_and_ends_span_on_success(
         tool_results,
         cycle_trace,
         parent_span,
+        thread_pool,
     )
-    await alist(stream)
+    list(stream)
 
     # Verify span was created with the parent span
     mock_tracer.start_tool_call_span.assert_called_once_with(tool_uses[0], parent_span)
@@ -326,15 +329,14 @@ async def test_run_tools_creates_and_ends_span_on_success(
 
 @unittest.mock.patch("strands.tools.executor.get_tracer")
 @pytest.mark.parametrize("tool_handler", [{"status": "failed"}], indirect=True)
-@pytest.mark.asyncio
-async def test_run_tools_creates_and_ends_span_on_failure(
+def test_run_tools_creates_and_ends_span_on_failure(
     mock_get_tracer,
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
     """Test that run_tools creates and ends a span on tool failure."""
     # Setup mock tracer and span
@@ -357,8 +359,9 @@ async def test_run_tools_creates_and_ends_span_on_failure(
         tool_results,
         cycle_trace,
         parent_span,
+        thread_pool,
     )
-    await alist(stream)
+    list(stream)
 
     # Verify span was created with the parent span
     mock_tracer.start_tool_call_span.assert_called_once_with(tool_uses[0], parent_span)
@@ -392,16 +395,16 @@ async def test_run_tools_creates_and_ends_span_on_failure(
     ],
     indirect=True,
 )
-@pytest.mark.asyncio
-async def test_run_tools_concurrent_execution_with_spans(
+def test_run_tools_parallel_execution_with_spans(
     mock_get_tracer,
     tool_handler,
     tool_uses,
     event_loop_metrics,
     invalid_tool_use_ids,
     cycle_trace,
-    alist,
+    thread_pool,
 ):
+    """Test that spans are created and ended for each tool in parallel execution."""
     # Setup mock tracer and spans
     mock_tracer = unittest.mock.MagicMock()
     mock_span1 = unittest.mock.MagicMock()
@@ -423,8 +426,9 @@ async def test_run_tools_concurrent_execution_with_spans(
         tool_results,
         cycle_trace,
         parent_span,
+        thread_pool,
     )
-    await alist(stream)
+    list(stream)
 
     # Verify spans were created for both tools
     assert mock_tracer.start_tool_call_span.call_count == 2
diff --git a/tests/strands/tools/test_registry.py b/tests/strands/tools/test_registry.py
index ebcba3fb1..bfdc2a47d 100644
--- a/tests/strands/tools/test_registry.py
+++ b/tests/strands/tools/test_registry.py
@@ -6,7 +6,6 @@
 
 import pytest
 
-import strands
 from strands.tools import PythonAgentTool
 from strands.tools.decorator import DecoratedFunctionTool, tool
 from strands.tools.registry import ToolRegistry
@@ -31,8 +30,8 @@ def test_process_tools_with_invalid_path():
 
 
 def test_register_tool_with_similar_name_raises():
-    tool_1 = PythonAgentTool(tool_name="tool-like-this", tool_spec=MagicMock(), tool_func=lambda: None)
-    tool_2 = PythonAgentTool(tool_name="tool_like_this", tool_spec=MagicMock(), tool_func=lambda: None)
+    tool_1 = PythonAgentTool(tool_name="tool-like-this", tool_spec=MagicMock(), callback=lambda: None)
+    tool_2 = PythonAgentTool(tool_name="tool_like_this", tool_spec=MagicMock(), callback=lambda: None)
 
     tool_registry = ToolRegistry()
 
@@ -47,23 +46,6 @@ def test_register_tool_with_similar_name_raises():
     )
 
 
-def test_get_all_tool_specs_returns_right_tool_specs():
-    tool_1 = strands.tool(lambda a: a, name="tool_1")
-    tool_2 = strands.tool(lambda b: b, name="tool_2")
-
-    tool_registry = ToolRegistry()
-
-    tool_registry.register_tool(tool_1)
-    tool_registry.register_tool(tool_2)
-
-    tool_specs = tool_registry.get_all_tool_specs()
-
-    assert tool_specs == [
-        tool_1.tool_spec,
-        tool_2.tool_spec,
-    ]
-
-
 def test_scan_module_for_tools():
     @tool
     def tool_function_1(a):
diff --git a/tests/strands/tools/test_tools.py b/tests/strands/tools/test_tools.py
index cec4825dc..cc3150209 100644
--- a/tests/strands/tools/test_tools.py
+++ b/tests/strands/tools/test_tools.py
@@ -12,44 +12,6 @@
 from strands.types.tools import ToolUse
 
 
-@pytest.fixture(scope="module")
-def identity_invoke():
-    def identity(tool_use, a):
-        return tool_use, a
-
-    return identity
-
-
-@pytest.fixture(scope="module")
-def identity_invoke_async():
-    async def identity(tool_use, a):
-        return tool_use, a
-
-    return identity
-
-
-@pytest.fixture
-def identity_tool(request):
-    identity = request.getfixturevalue(request.param)
-
-    return PythonAgentTool(
-        tool_name="identity",
-        tool_spec={
-            "name": "identity",
-            "description": "identity",
-            "inputSchema": {
-                "type": "object",
-                "properties": {
-                    "a": {
-                        "type": "integer",
-                    },
-                },
-            },
-        },
-        tool_func=identity,
-    )
-
-
 def test_validate_tool_use_name_valid():
     tool1 = {"name": "valid_tool_name", "toolUseId": "123"}
     # Should not raise an exception
@@ -436,62 +398,174 @@ def test_validate_tool_use_invalid(tool_use, expected_error):
         strands.tools.tools.validate_tool_use(tool_use)
 
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_name(identity_tool):
-    tru_name = identity_tool.tool_name
+@pytest.fixture
+def function():
+    def identity(a: int) -> int:
+        return a
+
+    return identity
+
+
+@pytest.fixture
+def tool(function):
+    return strands.tools.tool(function)
+
+
+def test__init__invalid_name():
+    with pytest.raises(ValueError, match="Tool name must be a string"):
+
+        @strands.tool(name=0)
+        def identity(a):
+            return a
+
+
+def test_tool_name(tool):
+    tru_name = tool.tool_name
     exp_name = "identity"
 
     assert tru_name == exp_name
 
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_spec(identity_tool):
-    tru_spec = identity_tool.tool_spec
+def test_tool_spec(tool):
     exp_spec = {
         "name": "identity",
         "description": "identity",
         "inputSchema": {
-            "type": "object",
-            "properties": {
-                "a": {
-                    "type": "integer",
+            "json": {
+                "type": "object",
+                "properties": {
+                    "a": {
+                        "description": "Parameter a",
+                        "type": "integer",
+                    },
                 },
-            },
+                "required": ["a"],
+            }
         },
     }
 
+    tru_spec = tool.tool_spec
     assert tru_spec == exp_spec
 
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_tool_type(identity_tool):
-    tru_type = identity_tool.tool_type
-    exp_type = "python"
+def test_tool_type(tool):
+    tru_type = tool.tool_type
+    exp_type = "function"
 
     assert tru_type == exp_type
 
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_supports_hot_reload(identity_tool):
-    assert not identity_tool.supports_hot_reload
+def test_supports_hot_reload(tool):
+    assert tool.supports_hot_reload
+
+
+def test_original_function(tool, function):
+    tru_name = tool.original_function.__name__
+    exp_name = function.__name__
+
+    assert tru_name == exp_name
+
+
+def test_original_function_not_decorated():
+    def identity(a: int):
+        return a
 
+    tool = strands.tool(func=identity, name="identity")
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-def test_get_display_properties(identity_tool):
-    tru_properties = identity_tool.get_display_properties()
+    tru_name = tool.original_function.__name__
+    exp_name = "identity"
+
+    assert tru_name == exp_name
+
+
+def test_get_display_properties(tool):
+    tru_properties = tool.get_display_properties()
     exp_properties = {
+        "Function": "identity",
         "Name": "identity",
-        "Type": "python",
+        "Type": "function",
     }
 
     assert tru_properties == exp_properties
 
 
-@pytest.mark.parametrize("identity_tool", ["identity_invoke", "identity_invoke_async"], indirect=True)
-@pytest.mark.asyncio
-async def test_stream(identity_tool, alist):
-    stream = identity_tool.stream({"tool_use": 1}, {"a": 2})
+def test_invoke(tool):
+    tru_output = tool.invoke({"input": {"a": 2}})
+    exp_output = {"toolUseId": "unknown", "status": "success", "content": [{"text": "2"}]}
+
+    assert tru_output == exp_output
+
+
+def test_invoke_with_agent():
+    @strands.tools.tool
+    def identity(a: int, agent: dict = None):
+        return a, agent
+
+    exp_output = {"toolUseId": "unknown", "status": "success", "content": [{"text": "(2, {'state': 1})"}]}
+
+    tru_output = identity.invoke({"input": {"a": 2}}, agent={"state": 1})
+
+    assert tru_output == exp_output
+
+
+# Tests from test_python_agent_tool.py
+@pytest.fixture
+def python_tool():
+    def identity(tool_use, a):
+        return tool_use, a
+
+    return PythonAgentTool(
+        tool_name="identity",
+        tool_spec={
+            "name": "identity",
+            "description": "identity",
+            "inputSchema": {
+                "type": "object",
+                "properties": {
+                    "a": {
+                        "type": "integer",
+                    },
+                },
+            },
+        },
+        callback=identity,
+    )
+
+
+def test_python_tool_name(python_tool):
+    tru_name = python_tool.tool_name
+    exp_name = "identity"
+
+    assert tru_name == exp_name
+
+
+def test_python_tool_spec(python_tool):
+    tru_spec = python_tool.tool_spec
+    exp_spec = {
+        "name": "identity",
+        "description": "identity",
+        "inputSchema": {
+            "type": "object",
+            "properties": {
+                "a": {
+                    "type": "integer",
+                },
+            },
+        },
+    }
+
+    assert tru_spec == exp_spec
+
+
+def test_python_tool_type(python_tool):
+    tru_type = python_tool.tool_type
+    exp_type = "python"
+
+    assert tru_type == exp_type
+
+
+def test_python_invoke(python_tool):
+    tru_output = python_tool.invoke({"tool_use": 1}, a=2)
+    exp_output = ({"tool_use": 1}, 2)
 
-    tru_events = await alist(stream)
-    exp_events = [({"tool_use": 1}, 2)]
-    assert tru_events == exp_events
+    assert tru_output == exp_output
diff --git a/tests/strands/types/models/test_openai.py b/tests/strands/types/models/test_openai.py
index 5baa7e709..dc43b3fcd 100644
--- a/tests/strands/types/models/test_openai.py
+++ b/tests/strands/types/models/test_openai.py
@@ -1,3 +1,4 @@
+import base64
 import unittest.mock
 
 import pytest
@@ -95,6 +96,23 @@ def system_prompt():
                 "type": "image_url",
             },
         ),
+        # Image - base64 encoded
+        (
+            {
+                "image": {
+                    "format": "jpg",
+                    "source": {"bytes": base64.b64encode(b"image")},
+                },
+            },
+            {
+                "image_url": {
+                    "detail": "auto",
+                    "format": "image/jpeg",
+                    "url": "",
+                },
+                "type": "image_url",
+            },
+        ),
         # Text
         (
             {"text": "hello"},
@@ -349,3 +367,15 @@ def test_format_chunk_unknown_type(model):
 
     with pytest.raises(RuntimeError, match="chunk_type= | unknown type"):
         model.format_chunk(event)
+
+
+@pytest.mark.parametrize(
+    ("data", "exp_result"),
+    [
+        (b"image", b"aW1hZ2U="),
+        (b"aW1hZ2U=", b"aW1hZ2U="),
+    ],
+)
+def test_b64encode(data, exp_result):
+    tru_result = SAOpenAIModel.b64encode(data)
+    assert tru_result == exp_result