diff --git a/sheaves.tex b/sheaves.tex index 5339e008..f86e8410 100644 --- a/sheaves.tex +++ b/sheaves.tex @@ -3218,6 +3218,8 @@ \section{Morphisms of ringed spaces and modules} is an $\mathcal{O}_Y(V)$-module map. Here we think of $\mathcal{F}(f^{-1}V)$ as an $\mathcal{O}_Y(V)$-module via the map $f^\sharp_V : \mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}V)$. +In other words, the formula $\varphi_V(as)=f^\sharp_V(a)\varphi_V(s)$ holds, +for $a\in\mathcal{O}_Y(V)$ and $s\in\mathcal{G}(V)$. The set of $f$-maps between $\mathcal{G}$ and $\mathcal{F}$ will be in canonical bijection with the sets @@ -3264,7 +3266,249 @@ \section{Morphisms of ringed spaces and modules} for example. \end{proof} +\section{Pulling back sections} +\label{section-pullback-section} +\begin{definition} +\label{definition-inverse-image-section} +Let $f:X\to Y$ be a continuous map of topological spaces. +Let $\mathcal{G}$ be a sheaf of sets over $Y$. +Let $V\subset Y$ be an open subset. +Let $s\in\mathcal{G}(V)$ be a section. +The \emph{inverse image section of $s$ along $f$}, denoted $f^{-1}s$, +is the section in $f^{-1}\mathcal{G}(f^{-1}(V))$ given by the +image of $s$ along the unit $\mathcal{G}\to f_*f^{-1}\mathcal{G}$ of the +adjunction between $f_*$ and $f^{-1}$ (see Section \ref{section-presheaves-functorial}). +\end{definition} + +The inverse image section is compatible with the adjunction +between $f_*$ and $f^{-1}$ in the following sense. +Let $\mathcal{F}$, $\mathcal{G}$ be sheaves respectively over $X$ and $Y$, +and let $\varphi^\sharp:\mathcal{G}\to f_*\mathcal{F}$ be a morphism of sheaves +whose adjunct is $\varphi^\flat:f^{-1}\mathcal{G}\to \mathcal{F}$. +Then, for $s\in \mathcal{G}(V)$, we have $\varphi^\sharp_V(s)=\varphi^\flat_{f^{-1}(V)}(f^{-1}s)$. +This follows from the fact that +$$ +\varphi^\sharp:\mathcal{G}\to f_*f^{-1}\mathcal{G}\xrightarrow{f_*\varphi^\flat}f_*\mathcal{F}, +$$ +where the first morphism is the unit of the adjunction between $f^{-1}$ and $f_*$. + +\begin{lemma} +\label{lemma-inverse-image-section-germ} +Let $f:X\to Y$ be a continuous map of topological spaces. +Let $\mathcal{G}$ be a sheaf of sets over $Y$. +Let $V\subset Y$ be an open subset. +Let $s\in\mathcal{G}(V)$ be a section. +Let $x\in X$ be a point. +Then $(f^{-1}s)_x=s_{f(x)}$ via the isomorphism of Lemma \ref{lemma-stalk-pullback}. +\end{lemma} + +\begin{proof} +Since $\mathcal{G}\to f_*f^{-1}\mathcal{G}$ is an $f$-map, +it follows from the commutative square to be found before Lemma \ref{lemma-compose-f-maps-stalks}. +\end{proof} + +Suppose $\mathcal{O}$ is a sheaf of rings over $Y$ and $\mathcal{G}$ is an $\mathcal{O}$-module. +From Lemma \ref{lemma-inverse-image-section-germ} it follows that +$f^{-1}(as)=f^{-1}(a)f^{-1}(s)$ +for $a\in\mathcal{O}(V)$ and $s\in\mathcal{G}(V)$, +where we are using the $f^{-1}\mathcal{O}$-module structure on +$f^{-1}\mathcal{G}$ coming from Lemma \ref{lemma-pullback-module}. + +\begin{lemma} +\label{lemma-inverse-image-section-morphism} +Let $f :X\to Y$ be a continuous map of topological spaces. +Let $\varphi:\mathcal{G}\to\mathcal{G}'$ be a morphism of +sheaves of sets over $Y$. +Let $V\subset Y$ be an open subset. +Let $s\in\mathcal{G}(V)$ be a section. +Then $f^{-1}(\varphi(s))=(f^{-1}\varphi)(f^{-1}s)$. +\end{lemma} + +\begin{proof} +This follows from the naturality of the unit, i.e., +the following square commutes: +$$ +\xymatrix{ +\mathcal{G} \ar@{->}[r] \ar@{->}[d] & \mathcal{G}' \ar@{->}[d] \\ +f_*f^{-1}\mathcal{G} \ar@{->}[r] & f_*f^{-1}\mathcal{G}' +} +$$ +In the square, if we map $s$ first down then right, +we get $(f^{-1}\varphi)(f^{-1}s)$. If we map $s$ first right then down, +we get $f^{-1}(\varphi(s))$. +\end{proof} + +\begin{lemma} +\label{lemma-inverse-image-section-functorial} +Let +$X\xrightarrow{f}Y\xrightarrow{g}Z$ be continuous maps of topological spaces. +Let $\mathcal{H}$ be a sheaf of sets over $Z$. +Let $W\subset Z$ be an open subset. +Let $t\in\mathcal{G}(W)$ be a section. +By the means of the isomorphism of functors +$(g\circ f)^{-1}\cong f^{-1}\circ g^{-1}$ +of Lemma \ref{lemma-pullback-composition}, +we can identify $(g\circ f)^{-1}t=f^{-1}(g^{-1}t)$. +\end{lemma} + +\begin{proof} +It suffices to see that $(g\circ f)^{-1}t$ and $f^{-1}(g^{-1}t)$ have same stalk at $x\in X$. +By Lemma \ref{lemma-inverse-image-section-germ}, +$((g\circ f)^{-1}t)_x=t_{g(f(x))}=(g^{-1}t)_{f(x)}=f^{-1}(g^{-1}t)_x$. +\end{proof} + +\begin{lemma} +\label{lemma-pullback-section} +Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of +ringed spaces. Let $\mathcal{G}$ be a sheaf of +$\mathcal{O}_Y$-modules. Let $V\subset Y$ be an open subset. Let +$s\in\mathcal{G}(V)$ be a section. Denote $g:f^{-1}(V)\to V$ to the +restriction of $f$. The following sections in $f^*\mathcal{G}(f^{-1}(V))$ +are the same: +\begin{enumerate} +\item The image of $s$ along the unit +$\mathcal{G}\to f_*f^*\mathcal{G}$ of the adjunction between +$f_*$ and $f^*$ (Lemma \ref{lemma-adjoint-pullback-pushforward-modules}), +\item The global section of $g^*(\mathcal{G}|_V)$ associated with +$\mathcal{O}_{f^{-1}(V)}\cong +g^*\mathcal{O}_V\to g^*(\mathcal{G}|_V)$, +where $\mathcal{O}_V\to\mathcal{G}|_V$ is the map associated with $s$ +(see first paragraph of Modules, Section \ref{modules-section-sections}), and +\item The image of $1\otimes f^{-1}s$ (see Definition \ref{definition-inverse-image-section}) along the morphism +$ +\mathcal{O}_X\otimes_{p,f^{-1}\mathcal{O}_Y}f^{-1}\mathcal{G} +\to +\mathcal{O}_X\otimes_{f^{-1}\mathcal{O}_Y}f^{-1}\mathcal{G}=f^*\mathcal{G}$. +\end{enumerate} +\end{lemma} + +\begin{proof} +Naturality of the unit of the adjunction between $g_*$ and $g^*$ gives a +commutative diagram +$$ +\xymatrix{ +\mathcal{O}_V \ar@{->}[r] \ar@{->}[d] & \mathcal{G}|_V \ar@{->}[d] \\ +g_*\mathcal{O}_{f^{-1}(V)}\cong g_*g^*\mathcal{O}_V \ar@{->}[r] +& g_*g^*(\mathcal{G}|_V) +} +$$ +The equality between (1) and (2) follows then from the fact that the restriction of the unit +$\mathcal{G}\to f_*f^*\mathcal{G}$ of the adjunction between $f_*$ and $f^*$ to $V$ +equals $\mathcal{G}|_V\to g_*g^*(\mathcal{G}|_V)$, +the unit of the adjunction between $g_*$ and $g^*$. + +On the other hand, from the proof of Lemma \ref{lemma-adjoint-pullback-pushforward-modules} +it follows that the unit of the adjunction between $f_*$ and $f^*$ at $\mathcal{G}$ is the composite +$$ +\mathcal{G} +\xrightarrow{\eta^\mathrm{ip}_\mathcal{G}} +f_*f^{-1}\mathcal{G} +\xrightarrow{f_*(\eta^\mathrm{er}_{f^{-1}\mathcal{G}})} +f_*(\mathcal{O}_X\otimes_{f^{-1}\mathcal{O}_Y}f^{-1}\mathcal{G}) +$$ +where $\eta^\mathrm{ip}$ is the unit of the adjunction between +inverse image and pushforward functors from Lemma \ref{lemma-adjoint-push-pull-modules} and +$\eta^\mathrm{er}$ is the unit of the adjunction between +extension and restriction of scalars functors from Lemma \ref{lemma-adjointness-tensor-restrict}. +Then $s$ maps along this composite as $s\mapsto f^{-1}s\mapsto 1\otimes f^{-1}s$, +which shows the equality between (1) and (3). +\end{proof} + +\begin{definition} +\label{definition-pullback-section} +Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of +ringed spaces. Let $\mathcal{G}$ be a sheaf of +$\mathcal{O}_Y$-modules. Let $V\subset Y$ be an open subset. Let +$s\in\mathcal{G}(V)$ be a section. The {\it pullback section of $s$ +along $f$}, denoted $f^*s$, is defined to be the section in +$f^*\mathcal{G}(f^{-1}(V))$ from Lemma \ref{lemma-pullback-section}. +\end{definition} + +Note that when $\mathcal{G}=\mathcal{O}_Y$, +the unit $\mathcal{O}_Y\to f_*f^*\mathcal{O}_Y\cong f_*\mathcal{O}_X$ +is just the map $f^\sharp$ on structure sheaves. +Hence $f^*a=f^\sharp a$ for $a\in\mathcal{O}_Y(V)$. +Note that the unit $\mathcal{G}\to f_*f^*\mathcal{G}$ can be understood as +an $f$-map $\mathcal{G}\to f^*\mathcal{G}$ of sheaves of modules +(see Section \ref{section-ringed-spaces-functoriality-modules}); +thus $f^*(as)=f^\sharp(a)f^*(s)$ for $a\in\mathcal{O}_Y(V)$ and $s\in\mathcal{G}(V)$. + +The pullback section is compatible with the adjunction +between $f_*$ and $f^*$ in the following sense. +Let $\mathcal{F}$ be an $\mathcal{O}_X$-module, $\mathcal{G}$ be an $\mathcal{O}_Y$-module +and $\varphi^\sharp:\mathcal{G}\to f_*\mathcal{F}$ be a morphism of $\mathcal{O}_Y$-modules +whose adjunct is $\varphi^\flat:f^*\mathcal{G}\to \mathcal{F}$. +Then, for $s\in \mathcal{G}(V)$, we have $\varphi^\sharp_V(s)=\varphi^\flat_{f^{-1}(V)}(f^*s)$. +This follows from the fact that +$$ +\varphi^\sharp:\mathcal{G}\to f_*f^*\mathcal{G}\xrightarrow{f_*\varphi^\flat}f_*\mathcal{F}, +$$ +where the first morphism is the unit of the adjunction between $f^*$ and $f_*$. + +\begin{lemma} +\label{lemma-pullback-section-germ} +Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of +ringed spaces. Let $\mathcal{G}$ be a sheaf of +$\mathcal{O}_Y$-modules. +Let $V\subset Y$ be an open subset. +Let $s\in\mathcal{G}(V)$ be a section. +Let $x\in f^{-1}(V)$ be a point. +By means of the isomorphism in +Lemma \ref{lemma-stalk-pullback-modules}, +we can identify $(f^*s)_x=s_{f(x)}\otimes 1$. +\end{lemma} + +\begin{proof} +Via the isomorphism of Lemma \ref{lemma-stalk-pullback-modules}, we have +$(f^*s)_x=(f^{-1}s\otimes 1)_x=(f^{-1}s)_x\otimes 1=s_{f(x)}\otimes 1$, +by Lemma \ref{lemma-inverse-image-section-germ}. +\end{proof} + +\begin{lemma} +\label{lemma-pullback-section-morphism} +Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ +be a morphism of ringed spaces. +Let $\varphi:\mathcal{G}\to\mathcal{G}'$ be a morphism of +sheaves of $\mathcal{O}_Y$-modules. +Let $V\subset Y$ be an open subset. +Let $s\in\mathcal{G}(V)$ be a section. +Then $f^*(\varphi(s))=(f^*\varphi)(f^*s)$. +\end{lemma} + +\begin{proof} +This follows from the naturality of the unit, i.e., +the following square commutes: +$$ +\xymatrix{ +\mathcal{G} \ar@{->}[r] \ar@{->}[d] & \mathcal{G}' \ar@{->}[d] \\ +f_*f^*\mathcal{G} \ar@{->}[r] & f_*f^*\mathcal{G}' +} +$$ +In the square, if we map $s$ first down then right, +we get $(f^*\varphi)(f^*s)$. If we map $s$ first right then down, +we get $f^*(\varphi(s))$. +\end{proof} + +\begin{lemma} +\label{lemma-pullback-section-functorial} +Let +$(X,\mathcal{O}_X) +\xrightarrow{f}(Y,\mathcal{O}_Y) +\xrightarrow{g}(Z,\mathcal{O}_Z)$ be morphisms of ringed spaces. +Let $\mathcal{H}$ be a sheaf of $\mathcal{O}_Z$-modules. +Let $W\subset Z$ be an open subset. +Let $t\in\mathcal{G}(W)$ be a section. +By the means of the isomorphism of functors +$(g\circ f)^*\cong f^*\circ g^*$ +of Lemma \ref{lemma-push-pull-composition-modules}, +we can identify $(g\circ f)^*t=f^*(g^*t)$. +\end{lemma} + +\begin{proof} +This follows by the description of the pullback section +in point (2) of Lemma \ref{lemma-pullback-section}. +\end{proof} \section{Skyscraper sheaves and stalks} \label{section-skyscraper-sheaves}