@@ -29,21 +29,14 @@ class QuantileLinearRegression(LinearRegression):
2929 value.
3030 """
3131
32- def __init__ (self , fit_intercept = True , normalize = False , copy_X = True ,
32+ def __init__ (self , fit_intercept = True , copy_X = True ,
3333 n_jobs = 1 , delta = 0.0001 , max_iter = 10 , quantile = 0.5 ,
3434 positive = False , verbose = False ):
3535 """
3636 :param fit_intercept: boolean, optional, default True
3737 whether to calculate the intercept for this model. If set
3838 to False, no intercept will be used in calculations
3939 (e.g. data is expected to be already centered).
40- :param normalize: boolean, optional, default False
41- This parameter is ignored when ``fit_intercept`` is set to False.
42- If True, the regressors X will be normalized before regression by
43- subtracting the mean and dividing by the l2-norm.
44- If you wish to standardize, please use
45- :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on
46- an estimator with ``normalize=False``.
4740 :param copy_X: boolean, optional, default True
4841 If True, X will be copied; else, it may be overwritten.
4942 :param n_jobs: int, optional, default 1
@@ -65,12 +58,12 @@ def __init__(self, fit_intercept=True, normalize=False, copy_X=True,
6558 """
6659 try :
6760 LinearRegression .__init__ (
68- self , fit_intercept = fit_intercept , normalize = normalize ,
61+ self , fit_intercept = fit_intercept ,
6962 copy_X = copy_X , n_jobs = n_jobs , positive = positive )
7063 except TypeError :
7164 # scikit-learn<0.24
7265 LinearRegression .__init__ (
73- self , fit_intercept = fit_intercept , normalize = normalize ,
66+ self , fit_intercept = fit_intercept ,
7467 copy_X = copy_X , n_jobs = n_jobs )
7568 self .max_iter = max_iter
7669 self .verbose = verbose
@@ -140,12 +133,12 @@ def compute_z(Xm, beta, Y, W, delta=0.0001):
140133
141134 try :
142135 clr = LinearRegression (fit_intercept = False , copy_X = self .copy_X ,
143- n_jobs = self .n_jobs , normalize = self . normalize ,
136+ n_jobs = self .n_jobs ,
144137 positive = self .positive )
145138 except AttributeError :
146139 # scikit-learn<0.24
147140 clr = LinearRegression (fit_intercept = False , copy_X = self .copy_X ,
148- n_jobs = self .n_jobs , normalize = self . normalize )
141+ n_jobs = self .n_jobs )
149142
150143 W = numpy .ones (X .shape [0 ]) if sample_weight is None else sample_weight
151144 self .n_iter_ = 0
0 commit comments