|
27 | 27 |
|
28 | 28 |
|
29 | 29 | @overload |
30 | | -def is_constant( |
31 | | - x: NDArray[Any] | types.CSBase | types.CupyArray, /, *, axis: None = None |
32 | | -) -> bool: ... |
| 30 | +def is_constant(x: NDArray[Any] | types.CSBase | types.CupyArray, /, *, axis: None = None) -> bool: ... |
33 | 31 | @overload |
34 | 32 | def is_constant(x: NDArray[Any] | types.CSBase, /, *, axis: Literal[0, 1]) -> NDArray[np.bool]: ... |
35 | 33 | @overload |
@@ -82,25 +80,13 @@ def is_constant( |
82 | 80 | # TODO(flying-sheep): support CSDataset (TODO) |
83 | 81 | # https://github.com/scverse/fast-array-utils/issues/52 |
84 | 82 | @overload |
85 | | -def mean( |
86 | | - x: CpuArray | GpuArray | DiskArray, |
87 | | - /, |
88 | | - *, |
89 | | - axis: Literal[None] = None, |
90 | | - dtype: DTypeLike | None = None, |
91 | | -) -> np.number[Any]: ... |
| 83 | +def mean(x: CpuArray | GpuArray | DiskArray, /, *, axis: Literal[None] = None, dtype: DTypeLike | None = None) -> np.number[Any]: ... |
92 | 84 | @overload |
93 | | -def mean( |
94 | | - x: CpuArray | DiskArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None |
95 | | -) -> NDArray[np.number[Any]]: ... |
| 85 | +def mean(x: CpuArray | DiskArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None) -> NDArray[np.number[Any]]: ... |
96 | 86 | @overload |
97 | | -def mean( |
98 | | - x: GpuArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None |
99 | | -) -> types.CupyArray: ... |
| 87 | +def mean(x: GpuArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None) -> types.CupyArray: ... |
100 | 88 | @overload |
101 | | -def mean( |
102 | | - x: types.DaskArray, /, *, axis: Literal[0, 1], dtype: ToDType[Any] | None = None |
103 | | -) -> types.DaskArray: ... |
| 89 | +def mean(x: types.DaskArray, /, *, axis: Literal[0, 1], dtype: ToDType[Any] | None = None) -> types.DaskArray: ... |
104 | 90 |
|
105 | 91 |
|
106 | 92 | def mean( |
@@ -149,21 +135,13 @@ def mean( |
149 | 135 |
|
150 | 136 |
|
151 | 137 | @overload |
152 | | -def mean_var( |
153 | | - x: CpuArray | GpuArray, /, *, axis: Literal[None] = None, correction: int = 0 |
154 | | -) -> tuple[np.float64, np.float64]: ... |
| 138 | +def mean_var(x: CpuArray | GpuArray, /, *, axis: Literal[None] = None, correction: int = 0) -> tuple[np.float64, np.float64]: ... |
155 | 139 | @overload |
156 | | -def mean_var( |
157 | | - x: CpuArray, /, *, axis: Literal[0, 1], correction: int = 0 |
158 | | -) -> tuple[NDArray[np.float64], NDArray[np.float64]]: ... |
| 140 | +def mean_var(x: CpuArray, /, *, axis: Literal[0, 1], correction: int = 0) -> tuple[NDArray[np.float64], NDArray[np.float64]]: ... |
159 | 141 | @overload |
160 | | -def mean_var( |
161 | | - x: GpuArray, /, *, axis: Literal[0, 1], correction: int = 0 |
162 | | -) -> tuple[types.CupyArray, types.CupyArray]: ... |
| 142 | +def mean_var(x: GpuArray, /, *, axis: Literal[0, 1], correction: int = 0) -> tuple[types.CupyArray, types.CupyArray]: ... |
163 | 143 | @overload |
164 | | -def mean_var( |
165 | | - x: types.DaskArray, /, *, axis: Literal[0, 1, None] = None, correction: int = 0 |
166 | | -) -> tuple[types.DaskArray, types.DaskArray]: ... |
| 144 | +def mean_var(x: types.DaskArray, /, *, axis: Literal[0, 1, None] = None, correction: int = 0) -> tuple[types.DaskArray, types.DaskArray]: ... |
167 | 145 |
|
168 | 146 |
|
169 | 147 | def mean_var( |
@@ -226,58 +204,21 @@ def mean_var( |
226 | 204 | # TODO(flying-sheep): support CSDataset (TODO) |
227 | 205 | # https://github.com/scverse/fast-array-utils/issues/52 |
228 | 206 | @overload |
229 | | -def sum( |
230 | | - x: CpuArray | DiskArray, |
231 | | - /, |
232 | | - *, |
233 | | - axis: None = None, |
234 | | - dtype: DTypeLike | None = None, |
235 | | - keep_cupy_as_array: bool = False, |
236 | | -) -> np.number[Any]: ... |
| 207 | +def sum(x: CpuArray | DiskArray, /, *, axis: None = None, dtype: DTypeLike | None = None, keep_cupy_as_array: bool = False) -> np.number[Any]: ... |
237 | 208 | @overload |
238 | | -def sum( |
239 | | - x: CpuArray | DiskArray, |
240 | | - /, |
241 | | - *, |
242 | | - axis: Literal[0, 1], |
243 | | - dtype: DTypeLike | None = None, |
244 | | - keep_cupy_as_array: bool = False, |
245 | | -) -> NDArray[Any]: ... |
| 209 | +def sum(x: CpuArray | DiskArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None, keep_cupy_as_array: bool = False) -> NDArray[Any]: ... |
246 | 210 |
|
247 | 211 |
|
248 | 212 | @overload |
249 | | -def sum( |
250 | | - x: GpuArray, |
251 | | - /, |
252 | | - *, |
253 | | - axis: None = None, |
254 | | - dtype: DTypeLike | None = None, |
255 | | - keep_cupy_as_array: Literal[False] = False, |
256 | | -) -> np.number[Any]: ... |
| 213 | +def sum(x: GpuArray, /, *, axis: None = None, dtype: DTypeLike | None = None, keep_cupy_as_array: Literal[False] = False) -> np.number[Any]: ... |
257 | 214 | @overload |
258 | | -def sum( |
259 | | - x: GpuArray, /, *, axis: None, dtype: DTypeLike | None = None, keep_cupy_as_array: Literal[True] |
260 | | -) -> types.CupyArray: ... |
| 215 | +def sum(x: GpuArray, /, *, axis: None, dtype: DTypeLike | None = None, keep_cupy_as_array: Literal[True]) -> types.CupyArray: ... |
261 | 216 | @overload |
262 | | -def sum( |
263 | | - x: GpuArray, |
264 | | - /, |
265 | | - *, |
266 | | - axis: Literal[0, 1], |
267 | | - dtype: DTypeLike | None = None, |
268 | | - keep_cupy_as_array: bool = False, |
269 | | -) -> types.CupyArray: ... |
| 217 | +def sum(x: GpuArray, /, *, axis: Literal[0, 1], dtype: DTypeLike | None = None, keep_cupy_as_array: bool = False) -> types.CupyArray: ... |
270 | 218 |
|
271 | 219 |
|
272 | 220 | @overload |
273 | | -def sum( |
274 | | - x: types.DaskArray, |
275 | | - /, |
276 | | - *, |
277 | | - axis: Literal[0, 1, None] = None, |
278 | | - dtype: DTypeLike | None = None, |
279 | | - keep_cupy_as_array: bool = False, |
280 | | -) -> types.DaskArray: ... |
| 221 | +def sum(x: types.DaskArray, /, *, axis: Literal[0, 1, None] = None, dtype: DTypeLike | None = None, keep_cupy_as_array: bool = False) -> types.DaskArray: ... |
281 | 222 |
|
282 | 223 |
|
283 | 224 | def sum( |
|
0 commit comments