diff --git a/doc/miscellaneous.rst b/doc/miscellaneous.rst index 9da707a6a..489b60898 100644 --- a/doc/miscellaneous.rst +++ b/doc/miscellaneous.rst @@ -34,7 +34,7 @@ to retain the 10 first elements of the array ``X`` and ``y``:: >>> np.all(y_res == y[:10]) True -In addition, the parameter ``validate`` control input checking. For instance, +In addition, the parameter ``validate`` controls input checking. For instance, turning ``validate=False`` allows to pass any type of target ``y`` and do some sampling for regression targets:: @@ -51,7 +51,7 @@ sampling for regression targets:: 75.46571114, -67.49177372, 159.72700509, -169.80498923, 211.95889757, 211.95889757]) -We illustrate the use of such sampler to implement an outlier rejection +We illustrated the use of such sampler to implement an outlier rejection estimator which can be easily used within a :class:`~imblearn.pipeline.Pipeline`: :ref:`sphx_glr_auto_examples_applications_plot_outlier_rejections.py` @@ -69,10 +69,11 @@ will generate balanced mini-batches. TensorFlow generator ~~~~~~~~~~~~~~~~~~~~ -The :func:`~imblearn.tensorflow.balanced_batch_generator` allow to generate +The :func:`~imblearn.tensorflow.balanced_batch_generator` allows to generate balanced mini-batches using an imbalanced-learn sampler which returns indices. Let's first generate some data:: + >>> n_features, n_classes = 10, 2 >>> X, y = make_classification( ... n_samples=10_000, n_features=n_features, n_informative=2, @@ -96,7 +97,7 @@ balanced:: ... random_state=42, ... ) -The ``generator`` and ``steps_per_epoch`` is used during the training of the +The ``generator`` and ``steps_per_epoch`` are used during the training of a Tensorflow model. We will illustrate how to use this generator. First, we can define a logistic regression model which will be optimized by a gradient descent::