@@ -112,19 +112,21 @@ class BalancedBatchGenerator(*ParentClass):
112112 >>> class_dict = dict()
113113 >>> class_dict[0] = 30; class_dict[1] = 50; class_dict[2] = 40
114114 >>> X, y = make_imbalance(iris.data, iris.target, class_dict)
115- >>> import keras
116- >>> y = keras.utils.to_categorical(y, 3)
117- >>> model = keras.models.Sequential()
118- >>> model.add(keras.layers.Dense(y.shape[1], input_dim=X.shape[1],
119- ... activation='softmax'))
115+ >>> import tensorflow
116+ >>> y = tensorflow.keras.utils.to_categorical(y, 3)
117+ >>> model = tensorflow.keras.models.Sequential()
118+ >>> model.add(
119+ ... tensorflow.keras.layers.Dense(
120+ ... y.shape[1], input_dim=X.shape[1], activation='softmax'
121+ ... )
122+ ... )
120123 >>> model.compile(optimizer='sgd', loss='categorical_crossentropy',
121124 ... metrics=['accuracy'])
122125 >>> from imblearn.keras import BalancedBatchGenerator
123126 >>> from imblearn.under_sampling import NearMiss
124127 >>> training_generator = BalancedBatchGenerator(
125128 ... X, y, sampler=NearMiss(), batch_size=10, random_state=42)
126- >>> callback_history = model.fit_generator(generator=training_generator,
127- ... epochs=10, verbose=0)
129+ >>> callback_history = model.fit(training_generator, epochs=10, verbose=0)
128130 """
129131
130132 # flag for keras sequence duck-typing
@@ -264,21 +266,23 @@ def balanced_batch_generator(
264266 >>> class_dict[0] = 30; class_dict[1] = 50; class_dict[2] = 40
265267 >>> from imblearn.datasets import make_imbalance
266268 >>> X, y = make_imbalance(X, y, class_dict)
267- >>> import keras
268- >>> y = keras.utils.to_categorical(y, 3)
269- >>> model = keras.models.Sequential()
270- >>> model.add(keras.layers.Dense(y.shape[1], input_dim=X.shape[1],
271- ... activation='softmax'))
269+ >>> import tensorflow
270+ >>> y = tensorflow.keras.utils.to_categorical(y, 3)
271+ >>> model = tensorflow.keras.models.Sequential()
272+ >>> model.add(
273+ ... tensorflow.keras.layers.Dense(
274+ ... y.shape[1], input_dim=X.shape[1], activation='softmax'
275+ ... )
276+ ... )
272277 >>> model.compile(optimizer='sgd', loss='categorical_crossentropy',
273278 ... metrics=['accuracy'])
274279 >>> from imblearn.keras import balanced_batch_generator
275280 >>> from imblearn.under_sampling import NearMiss
276281 >>> training_generator, steps_per_epoch = balanced_batch_generator(
277282 ... X, y, sampler=NearMiss(), batch_size=10, random_state=42)
278- >>> callback_history = model.fit_generator(generator=training_generator,
279- ... steps_per_epoch=steps_per_epoch,
280- ... epochs=10, verbose=0)
281-
283+ >>> callback_history = model.fit(training_generator,
284+ ... steps_per_epoch=steps_per_epoch,
285+ ... epochs=10, verbose=0)
282286 """
283287
284288 return tf_bbg (
0 commit comments