@@ -110,17 +110,20 @@ class CondensedNearestNeighbour(BaseCleaningSampler):
110110 Examples
111111 --------
112112 >>> from collections import Counter # doctest: +SKIP
113- >>> from sklearn.datasets import fetch_mldata # doctest: +SKIP
113+ >>> from sklearn.datasets import fetch_openml # doctest: +SKIP
114+ >>> from sklearn.preprocessing import scale # doctest: +SKIP
114115 >>> from imblearn.under_sampling import \
115116 CondensedNearestNeighbour # doctest: +SKIP
116- >>> pima = fetch_mldata('diabetes_scale' ) # doctest: +SKIP
117- >>> X, y = pima['data'], pima['target'] # doctest: +SKIP
117+ >>> X, y = fetch_openml('diabetes', version=1, return_X_y=True ) # doctest: +SKIP
118+ >>> X = scale(X) # doctest: +SKIP
118119 >>> print('Original dataset shape %s' % Counter(y)) # doctest: +SKIP
119- Original dataset shape Counter({{1: 500, -1: 268}}) # doctest: +SKIP
120+ Original dataset shape Counter({{'tested_negative': 500, \
121+ 'tested_positive': 268}}) # doctest: +SKIP
120122 >>> cnn = CondensedNearestNeighbour(random_state=42) # doctest: +SKIP
121123 >>> X_res, y_res = cnn.fit_resample(X, y) #doctest: +SKIP
122124 >>> print('Resampled dataset shape %s' % Counter(y_res)) # doctest: +SKIP
123- Resampled dataset shape Counter({{-1: 268, 1: 227}}) # doctest: +SKIP
125+ Resampled dataset shape Counter({{'tested_positive': 268, \
126+ 'tested_negative': 181}}) # doctest: +SKIP
124127 """
125128
126129 _parameter_constraints : dict = {
0 commit comments