Skip to content

Commit c2fe8c2

Browse files
Rephrase docstring
1 parent 9db1071 commit c2fe8c2

File tree

1 file changed

+6
-7
lines changed

1 file changed

+6
-7
lines changed

imblearn/over_sampling/_smote.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1096,8 +1096,8 @@ def _generate_sample(self, X, nn_data, nn_num, row, col, step):
10961096
# sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
10971097
# random_state=_random_state_docstring)
10981098
class SMOTEN(SMOTE):
1099-
"""Synthetic Minority Over-sampling Technique for Nominal
1100-
(SMOTE-NC).
1099+
"""Synthetic Minority Over-sampling Technique for Nominal data
1100+
(SMOTE-N).
11011101
11021102
Unlike :class:`SMOTE`, SMOTE-N operates on datasets containing categorical
11031103
features.
@@ -1200,14 +1200,13 @@ class SMOTEN(SMOTE):
12001200
... n_features=5, n_clusters_per_class=1, n_samples=1000, random_state=10)
12011201
>>> print('Original dataset shape (%s, %s)' % X.shape)
12021202
Original dataset shape (1000, 5)
1203-
>>> print('Original dataset samples per class {}'.format(Counter(y)))
1204-
Original dataset samples per class Counter({1: 900, 0: 100})
1205-
>>> # simulate the 2 last columns to be categorical features
1203+
>>> print('Original dataset samples in class 0: {}'.format(sum(y == 0)))
1204+
Original dataset samples in class 0: 100
12061205
>>> X[:, ] = RandomState(10).randint(0, 4, size=(1000, 5))
12071206
>>> sm = SMOTEN(random_state=42)
12081207
>>> X_res, y_res = sm.fit_resample(X, y)
1209-
>>> print('Resampled dataset samples per class {}'.format(Counter(y_res)))
1210-
Resampled dataset samples per class Counter({1: 900, 0: 900})
1208+
>>> print('Resampled dataset samples in class 0: {}'.format(sum(y_res == 0)))
1209+
Resampled dataset samples in class 0: 900
12111210
12121211
"""
12131212

0 commit comments

Comments
 (0)