@@ -1096,8 +1096,8 @@ def _generate_sample(self, X, nn_data, nn_num, row, col, step):
10961096# sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
10971097# random_state=_random_state_docstring)
10981098class SMOTEN (SMOTE ):
1099- """Synthetic Minority Over-sampling Technique for Nominal
1100- (SMOTE-NC ).
1099+ """Synthetic Minority Over-sampling Technique for Nominal data
1100+ (SMOTE-N ).
11011101
11021102 Unlike :class:`SMOTE`, SMOTE-N operates on datasets containing categorical
11031103 features.
@@ -1200,14 +1200,13 @@ class SMOTEN(SMOTE):
12001200 ... n_features=5, n_clusters_per_class=1, n_samples=1000, random_state=10)
12011201 >>> print('Original dataset shape (%s, %s)' % X.shape)
12021202 Original dataset shape (1000, 5)
1203- >>> print('Original dataset samples per class {}'.format(Counter(y)))
1204- Original dataset samples per class Counter({1: 900, 0: 100})
1205- >>> # simulate the 2 last columns to be categorical features
1203+ >>> print('Original dataset samples in class 0: {}'.format(sum(y == 0)))
1204+ Original dataset samples in class 0: 100
12061205 >>> X[:, ] = RandomState(10).randint(0, 4, size=(1000, 5))
12071206 >>> sm = SMOTEN(random_state=42)
12081207 >>> X_res, y_res = sm.fit_resample(X, y)
1209- >>> print('Resampled dataset samples per class {}'.format(Counter (y_res)))
1210- Resampled dataset samples per class Counter({1: 900, 0: 900})
1208+ >>> print('Resampled dataset samples in class 0: {}'.format(sum (y_res == 0 )))
1209+ Resampled dataset samples in class 0: 900
12111210
12121211 """
12131212
0 commit comments