Skip to content

Commit 07e327f

Browse files
committed
rename title that where too long
1 parent 16c6a64 commit 07e327f

File tree

8 files changed

+40
-21
lines changed

8 files changed

+40
-21
lines changed

doc/references/utils.rst

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,29 @@ Utilities
77

88
.. currentmodule:: imblearn.utils
99

10+
Validation checks used in samplers
11+
----------------------------------
12+
1013
.. autosummary::
1114
:toctree: generated/
1215
:template: function.rst
1316

1417
estimator_checks.parametrize_with_checks
1518
check_neighbors_object
1619
check_sampling_strategy
20+
check_target_type
21+
22+
Testing compatibility of your own sampler
23+
-----------------------------------------
24+
25+
.. automodule:: imblearn.utils.estimator_checks
26+
:no-members:
27+
:no-inherited-members:
28+
29+
.. currentmodule:: imblearn.utils.estimator_checks
30+
31+
.. autosummary::
32+
:toctree: generated/
33+
:template: function.rst
34+
35+
parametrize_with_checks

examples/api/plot_sampling_strategy_usage.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
=========================================================================
3-
Usage of the ``sampling_strategy`` parameter for the different algorithms
4-
=========================================================================
2+
====================================================
3+
How to use ``sampling_strategy`` in imbalanced-learn
4+
====================================================
55
66
This example shows the different usage of the parameter ``sampling_strategy``
77
for the different family of samplers (i.e. over-sampling, under-sampling. or

examples/combine/plot_comparison_combine.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
====================================================================
3-
Comparison of the combination of over- and under-sampling algorithms
4-
====================================================================
2+
==================================================
3+
Compare sampler combining over- and under-sampling
4+
==================================================
55
66
This example shows the effect of applying an under-sampling algorithms after
77
SMOTE over-sampling. In the literature, Tomek's link and edited nearest

examples/ensemble/plot_comparison_ensemble_classifier.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
==============================================================
3-
Comparison of ensembling classifiers internally using sampling
4-
==============================================================
2+
=============================================
3+
Compare ensemble classifiers using resampling
4+
=============================================
55
66
Ensembling classifiers have shown to improve classification performance compare
77
to single learner. However, they will be affected by class imbalance. This

examples/over-sampling/plot_comparison_over_sampling.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
====================================================
3-
Comparison of the different over-sampling algorithms
4-
====================================================
2+
==============================
3+
Compare over-sampling samplers
4+
==============================
55
66
The following example attends to make a qualitative comparison between the
77
different over-sampling algorithms available in the imbalanced-learn package.

examples/over-sampling/plot_illustration_generation_sample.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
====================================================================
3-
Illustration of the sample generation in the over-sampling algorithm
4-
====================================================================
2+
============================================
3+
Sample generator used in SMOTE-like samplers
4+
============================================
55
66
This example illustrates how a new sample is generated taking into account the
77
neighbourhood of this sample. A new sample is generated by selecting the

examples/under-sampling/plot_comparison_under_sampling.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
=====================================================
3-
Comparison of the different under-sampling algorithms
4-
=====================================================
2+
===============================
3+
Compare under-sampling samplers
4+
===============================
55
66
The following example attends to make a qualitative comparison between the
77
different under-sampling algorithms available in the imbalanced-learn package.

examples/under-sampling/plot_illustration_nearmiss.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
"""
2-
==========================================================================
3-
Illustration of the sample selection for the different NearMiss algorithms
4-
==========================================================================
2+
============================
3+
Sample selection in NearMiss
4+
============================
55
66
This example illustrates the different way of selecting example in NearMiss.
77

0 commit comments

Comments
 (0)