@@ -429,8 +429,8 @@ def __init__(self, gens=None, gap_group=None, canonicalize=True,
429429 gap_group = self ._libgap
430430 except ValueError :
431431 gap_group = gap (gap_group )
432- from sage .libs .gap .element import GapElement
433- if isinstance (gap_group , GapElement ):
432+ from sage .libs .gap .element import GapElement as LibGapElement
433+ if isinstance (gap_group , LibGapElement ):
434434 self ._libgap = gap_group
435435 #Handle the case where only the GAP group is specified.
436436 if gens is None :
@@ -581,7 +581,7 @@ def gap(self):
581581 sage: TestSuite(A4).run()
582582
583583 the follwing test shows, that support for the ``self._libgap`` attribute
584- is needed in the constructor of : class:`PermutationGroup_subgroup` :
584+ is needed in the constructor of the class:
585585
586586 sage: PG = PGU(6,2)
587587 sage: g, h = PG.gens()
@@ -616,10 +616,9 @@ def _Hom_(self, G, category=None, check=True):
616616
617617 sage: G = GL(2,3)
618618 sage: P = G.as_permutation_group()
619- sage: f = P.hom(G.gens()); f
620- Group morphism:
621- From: Permutation Group with generators [(1,2)(3,5)(4,7), (1,3,6)(2,4,8)]
622- To: General Linear Group of degree 2 over Finite Field of size 3
619+ sage: f = P.hom(G.gens())
620+ sage: type(f)
621+ <class 'sage.groups.libgap_morphism.GroupHomset_libgap_with_category.element_class'>
623622 sage: p1, p2 = P.gens()
624623 sage: f(p1*p2)
625624 [1 2]
0 commit comments