@@ -183,16 +183,16 @@ def is_group_divisible_design(groups,blocks,v,G=None,K=None,lambd=1,verbose=Fals
183183    EXAMPLES:: 
184184
185185        sage: from sage. combinat. designs. designs_pyx import is_group_divisible_design 
186-         sage: TD = designs. transversal_design( 4,10)                                      # optional - sage. matrix  
187-         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. matrix  
188-         sage: is_group_divisible_design( groups,TD,40,lambd=1)                            # optional - sage. matrix  
186+         sage: TD = designs. transversal_design( 4,10)                                      # optional - sage. modules  
187+         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. modules  
188+         sage: is_group_divisible_design( groups,TD,40,lambd=1)                            # optional - sage. modules  
189189        True 
190190
191191    TESTS:: 
192192
193-         sage: TD = designs. transversal_design( 4,10)                                      # optional - sage. matrix  
194-         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. matrix  
195-         sage: is_group_divisible_design( groups, TD, 40, lambd=2, verbose=True)           # optional - sage. matrix  
193+         sage: TD = designs. transversal_design( 4,10)                                      # optional - sage. modules  
194+         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. modules  
195+         sage: is_group_divisible_design( groups, TD, 40, lambd=2, verbose=True)           # optional - sage. modules  
196196        the pair ( 0,10)  has been seen 1 times but lambda=2 
197197        False 
198198        sage: is_group_divisible_design( [[1,2 ],[3,4 ]],[[1,2 ]],40,lambd=1,verbose=True)  
@@ -362,18 +362,18 @@ def is_pairwise_balanced_design(blocks,v,K=None,lambd=1,verbose=False):
362362        sage: sts = designs. steiner_triple_system( 9)  
363363        sage: is_pairwise_balanced_design( sts,9,[3 ],1)  
364364        True 
365-         sage: TD = designs. transversal_design( 4,10) . blocks( )                             # optional - sage. matrix  
366-         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. matrix  
367-         sage: is_pairwise_balanced_design( TD +  groups, 40, [4,10 ], 1, verbose=True)      # optional - sage. matrix  
365+         sage: TD = designs. transversal_design( 4,10) . blocks( )                             # optional - sage. modules  
366+         sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4) ]                   # optional - sage. modules  
367+         sage: is_pairwise_balanced_design( TD +  groups, 40, [4,10 ], 1, verbose=True)      # optional - sage. modules  
368368        True 
369369
370370    TESTS:: 
371371
372372        sage: from sage. combinat. designs. designs_pyx import is_pairwise_balanced_design 
373-         sage: is_pairwise_balanced_design( TD +  groups, 40, [4,10 ], 2, verbose=True)      # optional - sage. matrix  
373+         sage: is_pairwise_balanced_design( TD +  groups, 40, [4,10 ], 2, verbose=True)      # optional - sage. modules  
374374        the pair ( 0,1)  has been seen 1 times but lambda=2 
375375        False 
376-         sage: is_pairwise_balanced_design( TD +  groups, 40, [10 ], 1, verbose=True)        # optional - sage. matrix  
376+         sage: is_pairwise_balanced_design( TD +  groups, 40, [10 ], 1, verbose=True)        # optional - sage. modules  
377377        a block has size 4 while K=[10 ] 
378378        False 
379379        sage: is_pairwise_balanced_design( [[2,2 ]],40,[2 ],1,verbose=True)  
0 commit comments