Skip to content

Commit 8a01b97

Browse files
committed
Add internet doctest marker to various places
1 parent 5c8d9e9 commit 8a01b97

File tree

10 files changed

+16
-13
lines changed

10 files changed

+16
-13
lines changed

src/doc/en/thematic_tutorials/group_theory.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -978,6 +978,7 @@ to do this. The symmetric group on 7 symbols, `S_7`, has order
978978
`7! = 5040` and is divisible by `2^4 = 16`. Let's find one example
979979
of a subgroup of permutations on 4 symbols with order 16::
980980

981+
sage: # optional - internet
981982
sage: G = SymmetricGroup(7)
982983
sage: subgroups = G.conjugacy_classes_subgroups()
983984
sage: list(map(order, subgroups))

src/sage/combinat/designs/incidence_structures.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1865,7 +1865,7 @@ def automorphism_group(self):
18651865
sage: P = designs.DesarguesianProjectivePlaneDesign(2); P
18661866
(7,3,1)-Balanced Incomplete Block Design
18671867
sage: G = P.automorphism_group()
1868-
sage: G.is_isomorphic(PGL(3,2))
1868+
sage: G.is_isomorphic(PGL(3,2)) # optional - internet
18691869
True
18701870
sage: G
18711871
Permutation Group with generators [...]

src/sage/graphs/bliss.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -752,7 +752,7 @@ cpdef automorphism_group(G, partition=None, use_edge_labels=True) noexcept:
752752
sage: G = graphs.HeawoodGraph()
753753
sage: p = G.bipartite_sets()
754754
sage: A = G.automorphism_group(partition=[list(p[0]), list(p[1])])
755-
sage: automorphism_group(G, partition=p).is_isomorphic(A)
755+
sage: automorphism_group(G, partition=p).is_isomorphic(A) # optional - internet
756756
True
757757
758758
sage: G = graphs.CompleteMultipartiteGraph([5, 7, 11])

src/sage/graphs/generic_graph.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24700,7 +24700,7 @@ def automorphism_group(self, partition=None, verbosity=0,
2470024700
sage: A5 = AlternatingGroup(5)
2470124701
sage: Z2 = CyclicPermutationGroup(2)
2470224702
sage: H = A5.direct_product(Z2)[0] #see documentation for direct_product to explain the [0]
24703-
sage: G.is_isomorphic(H)
24703+
sage: G.is_isomorphic(H) # optional - internet
2470424704
True
2470524705

2470624706
Multigraphs::

src/sage/groups/finitely_presented_named.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -480,7 +480,7 @@ def AlternatingPresentation(n) -> FinitelyPresentedGroup:
480480
EXAMPLES::
481481
482482
sage: A6 = groups.presentation.Alternating(6)
483-
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order()
483+
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order() # optional - internet
484484
(True, 360)
485485
486486
TESTS:

src/sage/groups/libgap_wrapper.pyx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -334,7 +334,7 @@ class ParentLibGAP(SageObject):
334334
335335
EXAMPLES::
336336
337-
sage: SL(2,GF(49)).minimal_normal_subgroups()
337+
sage: SL(2,GF(49)).minimal_normal_subgroups() # optional - internet
338338
[Subgroup with 1 generators (
339339
[6 0]
340340
[0 6]
@@ -352,7 +352,7 @@ class ParentLibGAP(SageObject):
352352
353353
EXAMPLES::
354354
355-
sage: SL(2,GF(49)).minimal_normal_subgroups()
355+
sage: SL(2,GF(49)).minimal_normal_subgroups() # optional - internet
356356
[Subgroup with 1 generators (
357357
[6 0]
358358
[0 6]

src/sage/groups/perm_gps/permgroup.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1582,7 +1582,7 @@ def disjoint_direct_product_decomposition(self):
15821582
15831583
Counting the number of "connected" permutation groups of degree `n`::
15841584
1585-
sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq
1585+
sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq # optional - internet
15861586
[1, 1, 2, 6, 6, 27, 20]
15871587
sage: oeis(seq) # optional -- internet
15881588
0: A005226: Number of atomic species of degree n; also number of connected permutation groups of degree n.
@@ -3162,7 +3162,7 @@ def as_finitely_presented_group(self, reduced=False):
31623162
sage: A = AlternatingGroup(5).as_finitely_presented_group().gap()
31633163
sage: ctab = A.CosetTable(A.Subgroup([]))
31643164
sage: gen_ls = gap.List(ctab, gap.PermList)
3165-
sage: PermutationGroup(gen_ls).is_isomorphic(AlternatingGroup(5))
3165+
sage: PermutationGroup(gen_ls).is_isomorphic(AlternatingGroup(5)) # optional - internet
31663166
True
31673167
31683168
AUTHORS:
@@ -3252,7 +3252,7 @@ def commutator(self, other=None):
32523252
sage: G = SymmetricGroup(5)
32533253
sage: H = CyclicPermutationGroup(5)
32543254
sage: C = G.commutator(H)
3255-
sage: C.is_isomorphic(AlternatingGroup(5))
3255+
sage: C.is_isomorphic(AlternatingGroup(5)) # optional - internet
32563256
True
32573257
32583258
An abelian group will have a trivial commutator. ::
@@ -4925,6 +4925,8 @@ def normal_subgroups(self):
49254925
sage: G = PSL(2,7)
49264926
sage: D = G.direct_product(G)
49274927
sage: H = D[0]
4928+
4929+
sage: # optional - internet
49284930
sage: NH = H.normal_subgroups()
49294931
sage: len(NH)
49304932
4

src/sage/groups/perm_gps/permgroup_morphism.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ def kernel(self):
8181
sage: D = G.direct_product(G)
8282
sage: H = D[0]
8383
sage: pr1 = D[3]
84-
sage: G.is_isomorphic(pr1.kernel())
84+
sage: G.is_isomorphic(pr1.kernel()) # optional - internet
8585
True
8686
"""
8787
return self.domain().subgroup(gap_group=self._libgap_().Kernel())
@@ -113,7 +113,7 @@ def image(self, J):
113113
sage: pr1.image(G)
114114
Subgroup generated by [(3,7,5)(4,8,6), (1,2,6)(3,4,8)] of
115115
(The projective special linear group of degree 2 over Finite Field of size 7)
116-
sage: G.is_isomorphic(pr1.image(G))
116+
sage: G.is_isomorphic(pr1.image(G)) # optional - internet
117117
True
118118
119119
Check that :issue:`28324` is fixed::

src/sage/topology/simplicial_complex.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4296,7 +4296,7 @@ def automorphism_group(self):
42964296
True
42974297
42984298
sage: P = simplicial_complexes.RealProjectivePlane()
4299-
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups
4299+
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups # optional - internet
43004300
True
43014301
43024302
sage: Z = SimplicialComplex([['1','2'],['2','3','a']])

src/sage/topology/simplicial_complex_examples.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -583,7 +583,7 @@ def QuaternionicProjectivePlane():
583583
584584
Checking its automorphism group::
585585
586-
sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups
586+
sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups # optional - internet
587587
True
588588
"""
589589
from sage.groups.perm_gps.permgroup import PermutationGroup

0 commit comments

Comments
 (0)