You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Counting the number of "connected" permutation groups of degree `n`::
1584
1584
1585
-
sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq
1585
+
sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq # optional - internet
1586
1586
[1, 1, 2, 6, 6, 27, 20]
1587
1587
sage: oeis(seq) # optional -- internet
1588
1588
0: A005226: Number of atomic species of degree n; also number of connected permutation groups of degree n.
0 commit comments