1+ // Licensed to the .NET Foundation under one or more agreements.
2+ // The .NET Foundation licenses this file to you under the MIT license.
3+ // See the LICENSE file in the project root for more information.
4+
15using System . Collections . Generic ;
26using System . IO ;
37using Microsoft . ML ;
@@ -10,52 +14,52 @@ namespace Microsoft.ML.Tests.TrainerEstimators
1014{
1115 public partial class TrainerEstimators
1216 {
13- internal class DataPoint1
14- {
15- public float Label { get ; set ; }
16- [ VectorType ( 1 ) ]
17- public float [ ] Features { get ; set ; }
18- }
19-
20- internal class ScorePoint
21- {
22- public float Score { get ; set ; }
23- }
24-
25- // [NativeDependencyFact("OneDalImports")]
26- [ Fact ]
27- public void TestEstimatorOneDalLinReg ( )
28- {
29- List < DataPoint1 > literalData = new List < DataPoint1 >
30- {
31- new DataPoint1 { Features = new float [ ] { 1 } , Label = 39000 } ,
32- new DataPoint1 { Features = new float [ ] { 1.3F } , Label = 46200 } ,
33- new DataPoint1 { Features = new float [ ] { 1.5F } , Label = 37700 } ,
34- new DataPoint1 { Features = new float [ ] { 2 } , Label = 43500 } ,
35- new DataPoint1 { Features = new float [ ] { 2.2F } , Label = 40000 } ,
36- new DataPoint1 { Features = new float [ ] { 2.9F } , Label = 56000 }
37- } ;
38-
39- var dataView = ML . Data . LoadFromEnumerable ( literalData ) ;
40- // WL Merge Note: The LinReg is removed. Comment out this test for now.
41- //var trainer = ML.Regression.Trainers.LinReg(labelColumnName: "Label", featureColumnName: "Features");
42-
43- // // TestEstimatorCore(trainer, dataView);
44-
45- //var model = trainer.Fit(dataView);
46- //var modelParameters = ((ISingleFeaturePredictionTransformer<object>)model).Model as LinearRegressionModelParameters;
47- // // Assert.True(model.Model.HasStatistics);
48- // // Assert.NotEmpty(model.Model.StandardErrors);
49- // // Assert.NotEmpty(model.Model.PValues);
50- // // Assert.NotEmpty(model.Model.TValues);
51- //var transferredModel = ML.Regression.Trainers.OnlineGradientDescent(numberOfIterations: 1).Fit(dataView, modelParameters);
52-
53- //var predictionEngine = ML.Model.CreatePredictionEngine<DataPoint1, ScorePoint>(transferredModel);
54- //var result = predictionEngine.Predict(new DataPoint1 { Features = new float[]{1.3F} });
55-
56- // //Assert.True(File.Exists("libOneDalNative.so"));
57- //Assert.False(trainer.Info.WantCaching);
58- Done ( ) ;
17+ internal class DataPoint1
18+ {
19+ public float Label { get ; set ; }
20+ [ VectorType ( 1 ) ]
21+ public float [ ] Features { get ; set ; }
22+ }
23+
24+ internal class ScorePoint
25+ {
26+ public float Score { get ; set ; }
27+ }
28+
29+ // [NativeDependencyFact("OneDalImports")]
30+ [ Fact ]
31+ public void TestEstimatorOneDalLinReg ( )
32+ {
33+ List < DataPoint1 > literalData = new List < DataPoint1 >
34+ {
35+ new DataPoint1 { Features = new float [ ] { 1 } , Label = 39000 } ,
36+ new DataPoint1 { Features = new float [ ] { 1.3F } , Label = 46200 } ,
37+ new DataPoint1 { Features = new float [ ] { 1.5F } , Label = 37700 } ,
38+ new DataPoint1 { Features = new float [ ] { 2 } , Label = 43500 } ,
39+ new DataPoint1 { Features = new float [ ] { 2.2F } , Label = 40000 } ,
40+ new DataPoint1 { Features = new float [ ] { 2.9F } , Label = 56000 }
41+ } ;
42+
43+ var dataView = ML . Data . LoadFromEnumerable ( literalData ) ;
44+ // WL Merge Note: The LinReg is removed. Comment out this test for now.
45+ //var trainer = ML.Regression.Trainers.LinReg(labelColumnName: "Label", featureColumnName: "Features");
46+
47+ // // TestEstimatorCore(trainer, dataView);
48+
49+ //var model = trainer.Fit(dataView);
50+ //var modelParameters = ((ISingleFeaturePredictionTransformer<object>)model).Model as LinearRegressionModelParameters;
51+ // // Assert.True(model.Model.HasStatistics);
52+ // // Assert.NotEmpty(model.Model.StandardErrors);
53+ // // Assert.NotEmpty(model.Model.PValues);
54+ // // Assert.NotEmpty(model.Model.TValues);
55+ //var transferredModel = ML.Regression.Trainers.OnlineGradientDescent(numberOfIterations: 1).Fit(dataView, modelParameters);
56+
57+ //var predictionEngine = ML.Model.CreatePredictionEngine<DataPoint1, ScorePoint>(transferredModel);
58+ //var result = predictionEngine.Predict(new DataPoint1 { Features = new float[]{1.3F} });
59+
60+ // //Assert.True(File.Exists("libOneDalNative.so"));
61+ //Assert.False(trainer.Info.WantCaching);
62+ Done ( ) ;
5963 }
6064 }
6165}
0 commit comments