|
| 1 | +package com.redis.vl.notebooks; |
| 2 | + |
| 3 | +import static org.assertj.core.api.Assertions.*; |
| 4 | + |
| 5 | +import com.redis.vl.BaseIntegrationTest; |
| 6 | +import com.redis.vl.index.SearchIndex; |
| 7 | +import com.redis.vl.query.VectorQuery; |
| 8 | +import com.redis.vl.schema.IndexSchema; |
| 9 | +import com.redis.vl.schema.VectorField; |
| 10 | +import com.redis.vl.utils.vectorize.BaseVectorizer; |
| 11 | +import com.redis.vl.utils.vectorize.LangChain4JVectorizer; |
| 12 | +import com.redis.vl.utils.vectorize.SentenceTransformersVectorizer; |
| 13 | +import dev.langchain4j.model.cohere.CohereEmbeddingModel; |
| 14 | +import dev.langchain4j.model.openai.OpenAiEmbeddingModel; |
| 15 | +import dev.langchain4j.model.voyageai.VoyageAiEmbeddingModel; |
| 16 | +import java.util.*; |
| 17 | +import org.junit.jupiter.api.BeforeEach; |
| 18 | +import org.junit.jupiter.api.Tag; |
| 19 | +import org.junit.jupiter.api.Test; |
| 20 | +import redis.clients.jedis.search.schemafields.VectorField.VectorAlgorithm; |
| 21 | + |
| 22 | +/** |
| 23 | + * Integration test reproducing the 04_vectorizers.ipynb notebook. |
| 24 | + * |
| 25 | + * <p>Ported from: |
| 26 | + * /Users/brian.sam-bodden/Code/redis/py/redis-vl-python/docs/user_guide/04_vectorizers.ipynb |
| 27 | + * |
| 28 | + * <p>Uses same models and data as Python version: - Test sentences: "That is a happy dog", "That |
| 29 | + * is a happy person", "Today is a sunny day" - OpenAI: text-embedding-ada-002 - HuggingFace: |
| 30 | + * sentence-transformers/all-mpnet-base-v2 - Cohere: embed-english-v3.0 - VoyageAI: voyage-law-2 |
| 31 | + */ |
| 32 | +@Tag("integration") |
| 33 | +public class VectorizersNotebookIntegrationTest extends BaseIntegrationTest { |
| 34 | + |
| 35 | + // Same test sentences as Python notebook |
| 36 | + private List<String> sentences; |
| 37 | + |
| 38 | + @BeforeEach |
| 39 | + public void setUp() { |
| 40 | + sentences = |
| 41 | + Arrays.asList("That is a happy dog", "That is a happy person", "Today is a sunny day"); |
| 42 | + } |
| 43 | + |
| 44 | + @Test |
| 45 | + public void testOpenAIVectorizer() { |
| 46 | + String apiKey = System.getenv("OPENAI_API_KEY"); |
| 47 | + if (apiKey == null) { |
| 48 | + System.out.println("Skipping OpenAI test - OPENAI_API_KEY not set"); |
| 49 | + return; |
| 50 | + } |
| 51 | + |
| 52 | + // Create a vectorizer using OpenAI's text-embedding-ada-002 model (same as Python) |
| 53 | + var openaiModel = |
| 54 | + OpenAiEmbeddingModel.builder() |
| 55 | + .apiKey(apiKey) |
| 56 | + .modelName("text-embedding-ada-002") |
| 57 | + .build(); |
| 58 | + var oai = new LangChain4JVectorizer("text-embedding-ada-002", openaiModel); |
| 59 | + |
| 60 | + // Embed a single sentence |
| 61 | + float[] test = oai.embed("This is a test sentence."); |
| 62 | + System.out.println("OpenAI Vector dimensions: " + test.length); |
| 63 | + assertThat(test.length).isEqualTo(1536); // text-embedding-ada-002 produces 1536 dims |
| 64 | + |
| 65 | + // Print first 10 dimensions (like Python notebook) |
| 66 | + System.out.println("First 10 dimensions: " + Arrays.toString(Arrays.copyOfRange(test, 0, 10))); |
| 67 | + |
| 68 | + // Create many embeddings at once |
| 69 | + List<float[]> embeddings = oai.embedBatch(sentences); |
| 70 | + assertThat(embeddings).hasSize(3); |
| 71 | + System.out.println("Number of embeddings: " + embeddings.size()); |
| 72 | + System.out.println( |
| 73 | + "First embedding (first 10): " |
| 74 | + + Arrays.toString(Arrays.copyOfRange(embeddings.get(0), 0, 10))); |
| 75 | + } |
| 76 | + |
| 77 | + @Test |
| 78 | + public void testHuggingFaceVectorizer() { |
| 79 | + // Create a vectorizer using HuggingFace Sentence Transformers (same as Python) |
| 80 | + var hf = new SentenceTransformersVectorizer("sentence-transformers/all-mpnet-base-v2"); |
| 81 | + |
| 82 | + // Embed a sentence |
| 83 | + float[] hfTest = hf.embed("This is a test sentence."); |
| 84 | + System.out.println("HF Vector dimensions: " + hfTest.length); |
| 85 | + assertThat(hfTest.length).isEqualTo(768); // all-mpnet-base-v2 produces 768 dims |
| 86 | + System.out.println( |
| 87 | + "First 10 dimensions: " + Arrays.toString(Arrays.copyOfRange(hfTest, 0, 10))); |
| 88 | + |
| 89 | + // Create many embeddings at once |
| 90 | + List<float[]> hfEmbeddings = hf.embedBatch(sentences); |
| 91 | + assertThat(hfEmbeddings).hasSize(3); |
| 92 | + System.out.println("Created " + hfEmbeddings.size() + " embeddings"); |
| 93 | + } |
| 94 | + |
| 95 | + @Test |
| 96 | + public void testCohereVectorizer() { |
| 97 | + String apiKey = System.getenv("COHERE_API_KEY"); |
| 98 | + if (apiKey == null) { |
| 99 | + System.out.println("Skipping Cohere test - COHERE_API_KEY not set"); |
| 100 | + return; |
| 101 | + } |
| 102 | + |
| 103 | + // Create a vectorizer using Cohere (same model as Python) |
| 104 | + var cohereModel = |
| 105 | + CohereEmbeddingModel.builder().apiKey(apiKey).modelName("embed-english-v3.0").build(); |
| 106 | + var co = new LangChain4JVectorizer("embed-english-v3.0", cohereModel); |
| 107 | + |
| 108 | + // Embed a search query |
| 109 | + float[] queryEmbed = co.embed("This is a test sentence."); |
| 110 | + System.out.println("Cohere Query vector dimensions: " + queryEmbed.length); |
| 111 | + assertThat(queryEmbed.length).isEqualTo(1024); // embed-english-v3.0 produces 1024 dims |
| 112 | + System.out.println( |
| 113 | + "First 10 dimensions: " + Arrays.toString(Arrays.copyOfRange(queryEmbed, 0, 10))); |
| 114 | + |
| 115 | + // Note: LangChain4j Cohere doesn't expose input_type in the same way Python does |
| 116 | + // The model handles query vs document distinction internally |
| 117 | + } |
| 118 | + |
| 119 | + @Test |
| 120 | + public void testVoyageAIVectorizer() { |
| 121 | + String apiKey = System.getenv("VOYAGE_API_KEY"); |
| 122 | + if (apiKey == null) { |
| 123 | + System.out.println("Skipping VoyageAI test - VOYAGE_API_KEY not set"); |
| 124 | + return; |
| 125 | + } |
| 126 | + |
| 127 | + // Create a vectorizer using VoyageAI (same model as Python) |
| 128 | + var voyageModel = |
| 129 | + VoyageAiEmbeddingModel.builder().apiKey(apiKey).modelName("voyage-law-2").build(); |
| 130 | + var vo = new LangChain4JVectorizer("voyage-law-2", voyageModel); |
| 131 | + |
| 132 | + // Embed a search query |
| 133 | + float[] voyageQuery = vo.embed("This is a test sentence."); |
| 134 | + System.out.println("VoyageAI vector dimensions: " + voyageQuery.length); |
| 135 | + assertThat(voyageQuery.length).isEqualTo(1024); // voyage-law-2 produces 1024 dims |
| 136 | + System.out.println( |
| 137 | + "First 10 dimensions: " + Arrays.toString(Arrays.copyOfRange(voyageQuery, 0, 10))); |
| 138 | + } |
| 139 | + |
| 140 | + @Test |
| 141 | + public void testCustomVectorizer() { |
| 142 | + // Create a simple custom vectorizer (same as Python notebook) |
| 143 | + class CustomVectorizer extends BaseVectorizer { |
| 144 | + public CustomVectorizer() { |
| 145 | + super("custom-model", 768, "float32"); |
| 146 | + } |
| 147 | + |
| 148 | + @Override |
| 149 | + protected float[] generateEmbedding(String text) { |
| 150 | + float[] embedding = new float[768]; |
| 151 | + Arrays.fill(embedding, 0.101f); |
| 152 | + return embedding; |
| 153 | + } |
| 154 | + |
| 155 | + @Override |
| 156 | + protected List<float[]> generateEmbeddingsBatch(List<String> texts, int batchSize) { |
| 157 | + return texts.stream().map(this::generateEmbedding).toList(); |
| 158 | + } |
| 159 | + } |
| 160 | + |
| 161 | + var customVectorizer = new CustomVectorizer(); |
| 162 | + float[] customEmbed = customVectorizer.embed("This is a test sentence."); |
| 163 | + assertThat(customEmbed.length).isEqualTo(768); |
| 164 | + assertThat(customEmbed[0]).isEqualTo(0.101f); |
| 165 | + System.out.println( |
| 166 | + "Custom vectorizer: " + Arrays.toString(Arrays.copyOfRange(customEmbed, 0, 10))); |
| 167 | + } |
| 168 | + |
| 169 | + @Test |
| 170 | + public void testSearchWithProviderEmbeddings() { |
| 171 | + // Use HuggingFace vectorizer (same as Python notebook) |
| 172 | + var hf = new SentenceTransformersVectorizer("sentence-transformers/all-mpnet-base-v2"); |
| 173 | + |
| 174 | + // Create the schema (same as Python notebook YAML) |
| 175 | + var schema = |
| 176 | + IndexSchema.builder() |
| 177 | + .name("vectorizers") |
| 178 | + .prefix("doc") |
| 179 | + .storageType(IndexSchema.StorageType.HASH) |
| 180 | + .addTextField("sentence", textField -> {}) |
| 181 | + .addVectorField( |
| 182 | + "embedding", |
| 183 | + 768, |
| 184 | + vectorField -> |
| 185 | + vectorField |
| 186 | + .algorithm(VectorAlgorithm.FLAT) |
| 187 | + .distanceMetric(VectorField.DistanceMetric.COSINE) |
| 188 | + .dataType(VectorField.VectorDataType.FLOAT32)) |
| 189 | + .build(); |
| 190 | + |
| 191 | + // Create the index |
| 192 | + var index = new SearchIndex(schema, unifiedJedis); |
| 193 | + index.create(true); // overwrite if exists |
| 194 | + System.out.println("Index created: " + index.getName()); |
| 195 | + |
| 196 | + try { |
| 197 | + // Create embeddings for our sentences (same sentences as Python) |
| 198 | + List<float[]> sentenceEmbeddings = hf.embedBatch(sentences); |
| 199 | + |
| 200 | + // Prepare data for loading |
| 201 | + List<Map<String, Object>> data = new ArrayList<>(); |
| 202 | + for (int i = 0; i < sentences.size(); i++) { |
| 203 | + Map<String, Object> doc = new HashMap<>(); |
| 204 | + doc.put("sentence", sentences.get(i)); |
| 205 | + doc.put("embedding", sentenceEmbeddings.get(i)); |
| 206 | + data.add(doc); |
| 207 | + } |
| 208 | + |
| 209 | + // Load data into the index |
| 210 | + index.load(data); |
| 211 | + System.out.println("Loaded " + data.size() + " documents"); |
| 212 | + |
| 213 | + // Use the HuggingFace vectorizer to create a query embedding |
| 214 | + // Query: "That is a happy cat" (same as Python notebook) |
| 215 | + float[] queryEmbedding = hf.embed("That is a happy cat"); |
| 216 | + |
| 217 | + // Create and execute a vector query |
| 218 | + var query = |
| 219 | + VectorQuery.builder() |
| 220 | + .vector(queryEmbedding) |
| 221 | + .field("embedding") |
| 222 | + .returnFields(List.of("sentence")) |
| 223 | + .numResults(3) |
| 224 | + .build(); |
| 225 | + |
| 226 | + List<Map<String, Object>> results = index.query(query); |
| 227 | + assertThat(results).hasSize(3); |
| 228 | + |
| 229 | + System.out.println("\nSearch results for: 'That is a happy cat'"); |
| 230 | + for (var doc : results) { |
| 231 | + System.out.println(doc.get("sentence") + " - Distance: " + doc.get("vector_distance")); |
| 232 | + } |
| 233 | + |
| 234 | + // Verify first result is about a happy dog (most similar to happy cat) |
| 235 | + String firstResult = (String) results.get(0).get("sentence"); |
| 236 | + assertThat(firstResult).isEqualTo("That is a happy dog"); |
| 237 | + |
| 238 | + } finally { |
| 239 | + // Cleanup |
| 240 | + index.delete(true); |
| 241 | + System.out.println("Index deleted"); |
| 242 | + } |
| 243 | + } |
| 244 | + |
| 245 | + @Test |
| 246 | + public void testDataTypeSelection() { |
| 247 | + // Test different data types (same as Python notebook) |
| 248 | + |
| 249 | + // Create vectorizer with default FLOAT32 |
| 250 | + var vectorizer32 = new SentenceTransformersVectorizer("sentence-transformers/all-mpnet-base-v2"); |
| 251 | + |
| 252 | + float[] float32Embed = vectorizer32.embed("test sentence"); |
| 253 | + assertThat(float32Embed.length).isEqualTo(768); |
| 254 | + |
| 255 | + // Note: Python supports float16 and float64, but Java ONNX runtime may have limitations |
| 256 | + // For now, we verify that FLOAT32 works correctly |
| 257 | + System.out.println("FLOAT32 embedding created successfully"); |
| 258 | + } |
| 259 | +} |
0 commit comments