@@ -738,17 +738,28 @@ def resnext101_32x8d(
738738def wide_resnet50_2 (
739739 * , weights : Optional [Wide_ResNet50_2_Weights ] = None , progress : bool = True , ** kwargs : Any
740740) -> ResNet :
741- r """Wide ResNet-50-2 model from
742- `" Wide Residual Networks" <https://arxiv.org/pdf /1605.07146.pdf >`_.
741+ """Wide ResNet-50-2 model from
742+ `Wide Residual Networks <https://arxiv.org/abs /1605.07146>`_.
743743
744744 The model is the same as ResNet except for the bottleneck number of channels
745745 which is twice larger in every block. The number of channels in outer 1x1
746746 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
747747 channels, and in Wide ResNet-50-2 has 2048-1024-2048.
748748
749749 Args:
750- weights (Wide_ResNet50_2_Weights, optional): The pretrained weights for the model
751- progress (bool): If True, displays a progress bar of the download to stderr
750+ weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
751+ pretrained weights to use. See
752+ :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
753+ more details, and possible values. By default, no pre-trained
754+ weights are used.
755+ progress (bool, optional): If True, displays a progress bar of the
756+ download to stderr. Default is True.
757+ **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
758+ base class. Please refer to the `source code
759+ <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
760+ for more details about this class.
761+ .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
762+ :members:
752763 """
753764 weights = Wide_ResNet50_2_Weights .verify (weights )
754765
@@ -760,17 +771,28 @@ def wide_resnet50_2(
760771def wide_resnet101_2 (
761772 * , weights : Optional [Wide_ResNet101_2_Weights ] = None , progress : bool = True , ** kwargs : Any
762773) -> ResNet :
763- r """Wide ResNet-101-2 model from
764- `" Wide Residual Networks" <https://arxiv.org/pdf /1605.07146.pdf >`_.
774+ """Wide ResNet-101-2 model from
775+ `Wide Residual Networks <https://arxiv.org/abs /1605.07146>`_.
765776
766777 The model is the same as ResNet except for the bottleneck number of channels
767778 which is twice larger in every block. The number of channels in outer 1x1
768779 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
769780 channels, and in Wide ResNet-50-2 has 2048-1024-2048.
770781
771782 Args:
772- weights (Wide_ResNet101_2_Weights, optional): The pretrained weights for the model
773- progress (bool): If True, displays a progress bar of the download to stderr
783+ weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
784+ pretrained weights to use. See
785+ :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
786+ more details, and possible values. By default, no pre-trained
787+ weights are used.
788+ progress (bool, optional): If True, displays a progress bar of the
789+ download to stderr. Default is True.
790+ **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
791+ base class. Please refer to the `source code
792+ <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
793+ for more details about this class.
794+ .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
795+ :members:
774796 """
775797 weights = Wide_ResNet101_2_Weights .verify (weights )
776798
0 commit comments