@@ -99,7 +99,9 @@ def test_assign_targets_to_proposals(self):
9999 ],
100100 )
101101 def test_forward_negative_sample_frcnn (self , name ):
102- model = torchvision .models .detection .__dict__ [name ](num_classes = 2 , min_size = 100 , max_size = 100 )
102+ model = torchvision .models .detection .__dict__ [name ](
103+ weights = None , weights_backbone = None , num_classes = 2 , min_size = 100 , max_size = 100
104+ )
103105
104106 images , targets = self ._make_empty_sample ()
105107 loss_dict = model (images , targets )
@@ -108,7 +110,9 @@ def test_forward_negative_sample_frcnn(self, name):
108110 assert_equal (loss_dict ["loss_rpn_box_reg" ], torch .tensor (0.0 ))
109111
110112 def test_forward_negative_sample_mrcnn (self ):
111- model = torchvision .models .detection .maskrcnn_resnet50_fpn (num_classes = 2 , min_size = 100 , max_size = 100 )
113+ model = torchvision .models .detection .maskrcnn_resnet50_fpn (
114+ weights = None , weights_backbone = None , num_classes = 2 , min_size = 100 , max_size = 100
115+ )
112116
113117 images , targets = self ._make_empty_sample (add_masks = True )
114118 loss_dict = model (images , targets )
@@ -118,7 +122,9 @@ def test_forward_negative_sample_mrcnn(self):
118122 assert_equal (loss_dict ["loss_mask" ], torch .tensor (0.0 ))
119123
120124 def test_forward_negative_sample_krcnn (self ):
121- model = torchvision .models .detection .keypointrcnn_resnet50_fpn (num_classes = 2 , min_size = 100 , max_size = 100 )
125+ model = torchvision .models .detection .keypointrcnn_resnet50_fpn (
126+ weights = None , weights_backbone = None , num_classes = 2 , min_size = 100 , max_size = 100
127+ )
122128
123129 images , targets = self ._make_empty_sample (add_keypoints = True )
124130 loss_dict = model (images , targets )
@@ -128,15 +134,19 @@ def test_forward_negative_sample_krcnn(self):
128134 assert_equal (loss_dict ["loss_keypoint" ], torch .tensor (0.0 ))
129135
130136 def test_forward_negative_sample_retinanet (self ):
131- model = torchvision .models .detection .retinanet_resnet50_fpn (num_classes = 2 , min_size = 100 , max_size = 100 )
137+ model = torchvision .models .detection .retinanet_resnet50_fpn (
138+ weights = None , weights_backbone = None , num_classes = 2 , min_size = 100 , max_size = 100
139+ )
132140
133141 images , targets = self ._make_empty_sample ()
134142 loss_dict = model (images , targets )
135143
136144 assert_equal (loss_dict ["bbox_regression" ], torch .tensor (0.0 ))
137145
138146 def test_forward_negative_sample_fcos (self ):
139- model = torchvision .models .detection .fcos_resnet50_fpn (num_classes = 2 , min_size = 100 , max_size = 100 )
147+ model = torchvision .models .detection .fcos_resnet50_fpn (
148+ weights = None , weights_backbone = None , num_classes = 2 , min_size = 100 , max_size = 100
149+ )
140150
141151 images , targets = self ._make_empty_sample ()
142152 loss_dict = model (images , targets )
@@ -145,7 +155,7 @@ def test_forward_negative_sample_fcos(self):
145155 assert_equal (loss_dict ["bbox_ctrness" ], torch .tensor (0.0 ))
146156
147157 def test_forward_negative_sample_ssd (self ):
148- model = torchvision .models .detection .ssd300_vgg16 (num_classes = 2 )
158+ model = torchvision .models .detection .ssd300_vgg16 (weights = None , weights_backbone = None , num_classes = 2 )
149159
150160 images , targets = self ._make_empty_sample ()
151161 loss_dict = model (images , targets )
0 commit comments