@@ -23,30 +23,30 @@ def get_available_models():
2323@pytest .mark .parametrize ("backbone_name" , ("resnet18" , "resnet50" ))
2424def test_resnet_fpn_backbone (backbone_name ):
2525 x = torch .rand (1 , 3 , 300 , 300 , dtype = torch .float32 , device = "cpu" )
26- model = resnet_fpn_backbone (backbone_name = backbone_name )
26+ model = resnet_fpn_backbone (backbone_name = backbone_name , weights = None )
2727 assert isinstance (model , BackboneWithFPN )
2828 y = model (x )
2929 assert list (y .keys ()) == ["0" , "1" , "2" , "3" , "pool" ]
3030
3131 with pytest .raises (ValueError , match = r"Trainable layers should be in the range" ):
32- resnet_fpn_backbone (backbone_name = backbone_name , trainable_layers = 6 )
32+ resnet_fpn_backbone (backbone_name = backbone_name , weights = None , trainable_layers = 6 )
3333 with pytest .raises (ValueError , match = r"Each returned layer should be in the range" ):
34- resnet_fpn_backbone (backbone_name = backbone_name , returned_layers = [0 , 1 , 2 , 3 ])
34+ resnet_fpn_backbone (backbone_name = backbone_name , weights = None , returned_layers = [0 , 1 , 2 , 3 ])
3535 with pytest .raises (ValueError , match = r"Each returned layer should be in the range" ):
36- resnet_fpn_backbone (backbone_name = backbone_name , returned_layers = [2 , 3 , 4 , 5 ])
36+ resnet_fpn_backbone (backbone_name = backbone_name , weights = None , returned_layers = [2 , 3 , 4 , 5 ])
3737
3838
3939@pytest .mark .parametrize ("backbone_name" , ("mobilenet_v2" , "mobilenet_v3_large" , "mobilenet_v3_small" ))
4040def test_mobilenet_backbone (backbone_name ):
4141 with pytest .raises (ValueError , match = r"Trainable layers should be in the range" ):
42- mobilenet_backbone (backbone_name = backbone_name , fpn = False , trainable_layers = - 1 )
42+ mobilenet_backbone (backbone_name = backbone_name , weights = None , fpn = False , trainable_layers = - 1 )
4343 with pytest .raises (ValueError , match = r"Each returned layer should be in the range" ):
44- mobilenet_backbone (backbone_name = backbone_name , fpn = True , returned_layers = [- 1 , 0 , 1 , 2 ])
44+ mobilenet_backbone (backbone_name = backbone_name , weights = None , fpn = True , returned_layers = [- 1 , 0 , 1 , 2 ])
4545 with pytest .raises (ValueError , match = r"Each returned layer should be in the range" ):
46- mobilenet_backbone (backbone_name = backbone_name , fpn = True , returned_layers = [3 , 4 , 5 , 6 ])
47- model_fpn = mobilenet_backbone (backbone_name = backbone_name , fpn = True )
46+ mobilenet_backbone (backbone_name = backbone_name , weights = None , fpn = True , returned_layers = [3 , 4 , 5 , 6 ])
47+ model_fpn = mobilenet_backbone (backbone_name = backbone_name , weights = None , fpn = True )
4848 assert isinstance (model_fpn , BackboneWithFPN )
49- model = mobilenet_backbone (backbone_name = backbone_name , fpn = False )
49+ model = mobilenet_backbone (backbone_name = backbone_name , weights = None , fpn = False )
5050 assert isinstance (model , torch .nn .Sequential )
5151
5252
0 commit comments