@@ -159,14 +159,27 @@ class SqueezeNet1_1_Weights(WeightsEnum):
159159def squeezenet1_0 (
160160 * , weights : Optional [SqueezeNet1_0_Weights ] = None , progress : bool = True , ** kwargs : Any
161161) -> SqueezeNet :
162- r """SqueezeNet model architecture from the `" SqueezeNet: AlexNet-level
163- accuracy with 50x fewer parameters and <0.5MB model size"
162+ """SqueezeNet model architecture from the `SqueezeNet: AlexNet-level
163+ accuracy with 50x fewer parameters and <0.5MB model size
164164 <https://arxiv.org/abs/1602.07360>`_ paper.
165+
165166 The required minimum input size of the model is 21x21.
166167
167168 Args:
168- weights (SqueezeNet1_0_Weights, optional): The pretrained weights for the model
169- progress (bool): If True, displays a progress bar of the download to stderr
169+ weights (:class:`~torchvision.models.SqueezeNet1_0_Weights`, optional): The
170+ pretrained weights to use. See
171+ :class:`~torchvision.models.SqueezeNet1_0_Weights` below for
172+ more details, and possible values. By default, no pre-trained
173+ weights are used.
174+ progress (bool, optional): If True, displays a progress bar of the
175+ download to stderr. Default is True.
176+ **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
177+ base class. Please refer to the `source code
178+ <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
179+ for more details about this class.
180+
181+ .. autoclass:: torchvision.models.SqueezeNet1_0_Weights
182+ :members:
170183 """
171184 weights = SqueezeNet1_0_Weights .verify (weights )
172185 return _squeezenet ("1_0" , weights , progress , ** kwargs )
@@ -176,15 +189,28 @@ def squeezenet1_0(
176189def squeezenet1_1 (
177190 * , weights : Optional [SqueezeNet1_1_Weights ] = None , progress : bool = True , ** kwargs : Any
178191) -> SqueezeNet :
179- r """SqueezeNet 1.1 model from the `official SqueezeNet repo
192+ """SqueezeNet 1.1 model from the `official SqueezeNet repo
180193 <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
194+
181195 SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
182196 than SqueezeNet 1.0, without sacrificing accuracy.
183197 The required minimum input size of the model is 17x17.
184198
185199 Args:
186- weights (SqueezeNet1_1_Weights, optional): The pretrained weights for the model
187- progress (bool): If True, displays a progress bar of the download to stderr
200+ weights (:class:`~torchvision.models.SqueezeNet1_1_Weights`, optional): The
201+ pretrained weights to use. See
202+ :class:`~torchvision.models.SqueezeNet1_1_Weights` below for
203+ more details, and possible values. By default, no pre-trained
204+ weights are used.
205+ progress (bool, optional): If True, displays a progress bar of the
206+ download to stderr. Default is True.
207+ **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
208+ base class. Please refer to the `source code
209+ <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
210+ for more details about this class.
211+
212+ .. autoclass:: torchvision.models.SqueezeNet1_1_Weights
213+ :members:
188214 """
189215 weights = SqueezeNet1_1_Weights .verify (weights )
190216 return _squeezenet ("1_1" , weights , progress , ** kwargs )
0 commit comments