|
1 | | -from typing import Any |
| 1 | +from typing import Any, Union |
2 | 2 |
|
3 | 3 | import PIL.Image |
4 | 4 | import torch |
5 | 5 | from torchvision.prototype import features |
6 | 6 | from torchvision.transforms import functional_tensor as _FT, functional_pil as _FP |
7 | 7 |
|
8 | 8 |
|
| 9 | +# shortcut type |
| 10 | +DType = Union[torch.Tensor, PIL.Image.Image, features._Feature] |
| 11 | + |
9 | 12 | adjust_brightness_image_tensor = _FT.adjust_brightness |
10 | 13 | adjust_brightness_image_pil = _FP.adjust_brightness |
11 | 14 |
|
12 | 15 |
|
13 | | -def adjust_brightness(inpt: Any, brightness_factor: float) -> Any: |
| 16 | +def adjust_brightness(inpt: DType, brightness_factor: float) -> DType: |
14 | 17 | if isinstance(inpt, features._Feature): |
15 | 18 | return inpt.adjust_brightness(brightness_factor=brightness_factor) |
16 | | - elif isinstance(inpt, PIL.Image.Image): |
| 19 | + if isinstance(inpt, PIL.Image.Image): |
17 | 20 | return adjust_brightness_image_pil(inpt, brightness_factor=brightness_factor) |
18 | | - elif isinstance(inpt, torch.Tensor): |
19 | | - return adjust_brightness_image_tensor(inpt, brightness_factor=brightness_factor) |
20 | | - else: |
21 | | - return inpt |
| 21 | + return adjust_brightness_image_tensor(inpt, brightness_factor=brightness_factor) |
22 | 22 |
|
23 | 23 |
|
24 | 24 | adjust_saturation_image_tensor = _FT.adjust_saturation |
25 | 25 | adjust_saturation_image_pil = _FP.adjust_saturation |
26 | 26 |
|
27 | 27 |
|
28 | | -def adjust_saturation(inpt: Any, saturation_factor: float) -> Any: |
| 28 | +def adjust_saturation(inpt: DType, saturation_factor: float) -> DType: |
29 | 29 | if isinstance(inpt, features._Feature): |
30 | 30 | return inpt.adjust_saturation(saturation_factor=saturation_factor) |
31 | | - elif isinstance(inpt, PIL.Image.Image): |
| 31 | + if isinstance(inpt, PIL.Image.Image): |
32 | 32 | return adjust_saturation_image_pil(inpt, saturation_factor=saturation_factor) |
33 | | - elif isinstance(inpt, torch.Tensor): |
34 | | - return adjust_saturation_image_tensor(inpt, saturation_factor=saturation_factor) |
35 | | - else: |
36 | | - return inpt |
| 33 | + return adjust_saturation_image_tensor(inpt, saturation_factor=saturation_factor) |
37 | 34 |
|
38 | 35 |
|
39 | 36 | adjust_contrast_image_tensor = _FT.adjust_contrast |
40 | 37 | adjust_contrast_image_pil = _FP.adjust_contrast |
41 | 38 |
|
42 | 39 |
|
43 | | -def adjust_contrast(inpt: Any, contrast_factor: float) -> Any: |
| 40 | +def adjust_contrast(inpt: DType, contrast_factor: float) -> DType: |
44 | 41 | if isinstance(inpt, features._Feature): |
45 | 42 | return inpt.adjust_contrast(contrast_factor=contrast_factor) |
46 | | - elif isinstance(inpt, PIL.Image.Image): |
| 43 | + if isinstance(inpt, PIL.Image.Image): |
47 | 44 | return adjust_contrast_image_pil(inpt, contrast_factor=contrast_factor) |
48 | | - elif isinstance(inpt, torch.Tensor): |
49 | | - return adjust_contrast_image_tensor(inpt, contrast_factor=contrast_factor) |
50 | | - else: |
51 | | - return inpt |
| 45 | + return adjust_contrast_image_tensor(inpt, contrast_factor=contrast_factor) |
52 | 46 |
|
53 | 47 |
|
54 | 48 | adjust_sharpness_image_tensor = _FT.adjust_sharpness |
55 | 49 | adjust_sharpness_image_pil = _FP.adjust_sharpness |
56 | 50 |
|
57 | 51 |
|
58 | | -def adjust_sharpness(inpt: Any, sharpness_factor: float) -> Any: |
| 52 | +def adjust_sharpness(inpt: DType, sharpness_factor: float) -> DType: |
59 | 53 | if isinstance(inpt, features._Feature): |
60 | 54 | return inpt.adjust_sharpness(sharpness_factor=sharpness_factor) |
61 | | - elif isinstance(inpt, PIL.Image.Image): |
| 55 | + if isinstance(inpt, PIL.Image.Image): |
62 | 56 | return adjust_sharpness_image_pil(inpt, sharpness_factor=sharpness_factor) |
63 | | - elif isinstance(inpt, torch.Tensor): |
64 | | - return adjust_sharpness_image_tensor(inpt, sharpness_factor=sharpness_factor) |
65 | | - else: |
66 | | - return inpt |
| 57 | + return adjust_sharpness_image_tensor(inpt, sharpness_factor=sharpness_factor) |
67 | 58 |
|
68 | 59 |
|
69 | 60 | adjust_hue_image_tensor = _FT.adjust_hue |
70 | 61 | adjust_hue_image_pil = _FP.adjust_hue |
71 | 62 |
|
72 | 63 |
|
73 | | -def adjust_hue(inpt: Any, hue_factor: float) -> Any: |
| 64 | +def adjust_hue(inpt: DType, hue_factor: float) -> DType: |
74 | 65 | if isinstance(inpt, features._Feature): |
75 | 66 | return inpt.adjust_hue(hue_factor=hue_factor) |
76 | | - elif isinstance(inpt, PIL.Image.Image): |
| 67 | + if isinstance(inpt, PIL.Image.Image): |
77 | 68 | return adjust_hue_image_pil(inpt, hue_factor=hue_factor) |
78 | | - elif isinstance(inpt, torch.Tensor): |
79 | | - return adjust_hue_image_tensor(inpt, hue_factor=hue_factor) |
80 | | - else: |
81 | | - return inpt |
| 69 | + return adjust_hue_image_tensor(inpt, hue_factor=hue_factor) |
82 | 70 |
|
83 | 71 |
|
84 | 72 | adjust_gamma_image_tensor = _FT.adjust_gamma |
85 | 73 | adjust_gamma_image_pil = _FP.adjust_gamma |
86 | 74 |
|
87 | 75 |
|
88 | | -def adjust_gamma(inpt: Any, gamma: float, gain: float = 1) -> Any: |
| 76 | +def adjust_gamma(inpt: DType, gamma: float, gain: float = 1) -> DType: |
89 | 77 | if isinstance(inpt, features._Feature): |
90 | 78 | return inpt.adjust_gamma(gamma=gamma, gain=gain) |
91 | | - elif isinstance(inpt, PIL.Image.Image): |
| 79 | + if isinstance(inpt, PIL.Image.Image): |
92 | 80 | return adjust_gamma_image_pil(inpt, gamma=gamma, gain=gain) |
93 | | - elif isinstance(inpt, torch.Tensor): |
94 | | - return adjust_gamma_image_tensor(inpt, gamma=gamma, gain=gain) |
95 | | - else: |
96 | | - return inpt |
| 81 | + return adjust_gamma_image_tensor(inpt, gamma=gamma, gain=gain) |
97 | 82 |
|
98 | 83 |
|
99 | 84 | posterize_image_tensor = _FT.posterize |
100 | 85 | posterize_image_pil = _FP.posterize |
101 | 86 |
|
102 | 87 |
|
103 | | -def posterize(inpt: Any, bits: int) -> Any: |
| 88 | +def posterize(inpt: DType, bits: int) -> DType: |
104 | 89 | if isinstance(inpt, features._Feature): |
105 | 90 | return inpt.posterize(bits=bits) |
106 | | - elif isinstance(inpt, PIL.Image.Image): |
| 91 | + if isinstance(inpt, PIL.Image.Image): |
107 | 92 | return posterize_image_pil(inpt, bits=bits) |
108 | | - elif isinstance(inpt, torch.Tensor): |
109 | | - return posterize_image_tensor(inpt, bits=bits) |
110 | | - else: |
111 | | - return inpt |
| 93 | + return posterize_image_tensor(inpt, bits=bits) |
112 | 94 |
|
113 | 95 |
|
114 | 96 | solarize_image_tensor = _FT.solarize |
115 | 97 | solarize_image_pil = _FP.solarize |
116 | 98 |
|
117 | 99 |
|
118 | | -def solarize(inpt: Any, threshold: float) -> Any: |
| 100 | +def solarize(inpt: DType, threshold: float) -> DType: |
119 | 101 | if isinstance(inpt, features._Feature): |
120 | 102 | return inpt.solarize(threshold=threshold) |
121 | | - elif isinstance(inpt, PIL.Image.Image): |
| 103 | + if isinstance(inpt, PIL.Image.Image): |
122 | 104 | return solarize_image_pil(inpt, threshold=threshold) |
123 | | - elif isinstance(inpt, torch.Tensor): |
124 | | - return solarize_image_tensor(inpt, threshold=threshold) |
125 | | - else: |
126 | | - return inpt |
| 105 | + return solarize_image_tensor(inpt, threshold=threshold) |
127 | 106 |
|
128 | 107 |
|
129 | 108 | autocontrast_image_tensor = _FT.autocontrast |
130 | 109 | autocontrast_image_pil = _FP.autocontrast |
131 | 110 |
|
132 | 111 |
|
133 | | -def autocontrast(inpt: Any) -> Any: |
| 112 | +def autocontrast(inpt: DType) -> DType: |
134 | 113 | if isinstance(inpt, features._Feature): |
135 | 114 | return inpt.autocontrast() |
136 | | - elif isinstance(inpt, PIL.Image.Image): |
| 115 | + if isinstance(inpt, PIL.Image.Image): |
137 | 116 | return autocontrast_image_pil(inpt) |
138 | | - elif isinstance(inpt, torch.Tensor): |
139 | | - return autocontrast_image_tensor(inpt) |
140 | | - else: |
141 | | - return inpt |
| 117 | + return autocontrast_image_tensor(inpt) |
142 | 118 |
|
143 | 119 |
|
144 | 120 | equalize_image_tensor = _FT.equalize |
145 | 121 | equalize_image_pil = _FP.equalize |
146 | 122 |
|
147 | 123 |
|
148 | | -def equalize(inpt: Any) -> Any: |
| 124 | +def equalize(inpt: DType) -> DType: |
149 | 125 | if isinstance(inpt, features._Feature): |
150 | 126 | return inpt.equalize() |
151 | | - elif isinstance(inpt, PIL.Image.Image): |
| 127 | + if isinstance(inpt, PIL.Image.Image): |
152 | 128 | return equalize_image_pil(inpt) |
153 | | - elif isinstance(inpt, torch.Tensor): |
154 | | - return equalize_image_tensor(inpt) |
155 | | - else: |
156 | | - return inpt |
| 129 | + return equalize_image_tensor(inpt) |
157 | 130 |
|
158 | 131 |
|
159 | 132 | invert_image_tensor = _FT.invert |
160 | 133 | invert_image_pil = _FP.invert |
161 | 134 |
|
162 | 135 |
|
163 | | -def invert(inpt: Any) -> Any: |
| 136 | +def invert(inpt: DType) -> DType: |
164 | 137 | if isinstance(inpt, features._Feature): |
165 | 138 | return inpt.invert() |
166 | | - elif isinstance(inpt, PIL.Image.Image): |
| 139 | + if isinstance(inpt, PIL.Image.Image): |
167 | 140 | return invert_image_pil(inpt) |
168 | | - elif isinstance(inpt, torch.Tensor): |
169 | | - return invert_image_tensor(inpt) |
170 | | - else: |
171 | | - return inpt |
| 141 | + return invert_image_tensor(inpt) |
0 commit comments