|
| 1 | +""" |
| 2 | +======================= |
| 3 | +Video API |
| 4 | +======================= |
| 5 | +
|
| 6 | +This example illustrates some of the APIs that torchvision offers for |
| 7 | +videos, together with the examples on how to build datasets and more. |
| 8 | +""" |
| 9 | + |
| 10 | +#################################### |
| 11 | +# 1. Introduction: building a new video object and examining the properties |
| 12 | +# ------------------------------------------------------------------------- |
| 13 | +# First we select a video to test the object out. For the sake of argument |
| 14 | +# we're using one from kinetics400 dataset. |
| 15 | +# To create it, we need to define the path and the stream we want to use. |
| 16 | + |
| 17 | +###################################### |
| 18 | +# Chosen video statistics: |
| 19 | +# |
| 20 | +# - WUzgd7C1pWA.mp4 |
| 21 | +# - source: |
| 22 | +# - kinetics-400 |
| 23 | +# - video: |
| 24 | +# - H-264 |
| 25 | +# - MPEG-4 AVC (part 10) (avc1) |
| 26 | +# - fps: 29.97 |
| 27 | +# - audio: |
| 28 | +# - MPEG AAC audio (mp4a) |
| 29 | +# - sample rate: 48K Hz |
| 30 | +# |
| 31 | + |
| 32 | +import torch |
| 33 | +import torchvision |
| 34 | +from torchvision.datasets.utils import download_url |
| 35 | + |
| 36 | +# Download the sample video |
| 37 | +download_url( |
| 38 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/WUzgd7C1pWA.mp4?raw=true", |
| 39 | + ".", |
| 40 | + "WUzgd7C1pWA.mp4" |
| 41 | +) |
| 42 | +video_path = "./WUzgd7C1pWA.mp4" |
| 43 | + |
| 44 | +###################################### |
| 45 | +# Streams are defined in a similar fashion as torch devices. We encode them as strings in a form |
| 46 | +# of ``stream_type:stream_id`` where ``stream_type`` is a string and ``stream_id`` a long int. |
| 47 | +# The constructor accepts passing a ``stream_type`` only, in which case the stream is auto-discovered. |
| 48 | +# Firstly, let's get the metadata for our particular video: |
| 49 | + |
| 50 | +stream = "video" |
| 51 | +video = torchvision.io.VideoReader(video_path, stream) |
| 52 | +video.get_metadata() |
| 53 | + |
| 54 | +###################################### |
| 55 | +# Here we can see that video has two streams - a video and an audio stream. |
| 56 | +# Currently available stream types include ['video', 'audio']. |
| 57 | +# Each descriptor consists of two parts: stream type (e.g. 'video') and a unique stream id |
| 58 | +# (which are determined by video encoding). |
| 59 | +# In this way, if the video container contains multiple streams of the same type, |
| 60 | +# users can access the one they want. |
| 61 | +# If only stream type is passed, the decoder auto-detects first stream of that type and returns it. |
| 62 | + |
| 63 | +###################################### |
| 64 | +# Let's read all the frames from the video stream. By default, the return value of |
| 65 | +# ``next(video_reader)`` is a dict containing the following fields. |
| 66 | +# |
| 67 | +# The return fields are: |
| 68 | +# |
| 69 | +# - ``data``: containing a torch.tensor |
| 70 | +# - ``pts``: containing a float timestamp of this particular frame |
| 71 | + |
| 72 | +metadata = video.get_metadata() |
| 73 | +video.set_current_stream("audio") |
| 74 | + |
| 75 | +frames = [] # we are going to save the frames here. |
| 76 | +ptss = [] # pts is a presentation timestamp in seconds (float) of each frame |
| 77 | +for frame in video: |
| 78 | + frames.append(frame['data']) |
| 79 | + ptss.append(frame['pts']) |
| 80 | + |
| 81 | +print("PTS for first five frames ", ptss[:5]) |
| 82 | +print("Total number of frames: ", len(frames)) |
| 83 | +approx_nf = metadata['audio']['duration'][0] * metadata['audio']['framerate'][0] |
| 84 | +print("Approx total number of datapoints we can expect: ", approx_nf) |
| 85 | +print("Read data size: ", frames[0].size(0) * len(frames)) |
| 86 | + |
| 87 | +###################################### |
| 88 | +# But what if we only want to read certain time segment of the video? |
| 89 | +# That can be done easily using the combination of our ``seek`` function, and the fact that each call |
| 90 | +# to next returns the presentation timestamp of the returned frame in seconds. |
| 91 | +# |
| 92 | +# Given that our implementation relies on python iterators, |
| 93 | +# we can leverage itertools to simplify the process and make it more pythonic. |
| 94 | +# |
| 95 | +# For example, if we wanted to read ten frames from second second: |
| 96 | + |
| 97 | + |
| 98 | +import itertools |
| 99 | +video.set_current_stream("video") |
| 100 | + |
| 101 | +frames = [] # we are going to save the frames here. |
| 102 | + |
| 103 | +# We seek into a second second of the video and use islice to get 10 frames since |
| 104 | +for frame, pts in itertools.islice(video.seek(2), 10): |
| 105 | + frames.append(frame) |
| 106 | + |
| 107 | +print("Total number of frames: ", len(frames)) |
| 108 | + |
| 109 | +###################################### |
| 110 | +# Or if we wanted to read from 2nd to 5th second, |
| 111 | +# We seek into a second second of the video, |
| 112 | +# then we utilize the itertools takewhile to get the |
| 113 | +# correct number of frames: |
| 114 | + |
| 115 | +video.set_current_stream("video") |
| 116 | +frames = [] # we are going to save the frames here. |
| 117 | +video = video.seek(2) |
| 118 | + |
| 119 | +for frame in itertools.takewhile(lambda x: x['pts'] <= 5, video): |
| 120 | + frames.append(frame['data']) |
| 121 | + |
| 122 | +print("Total number of frames: ", len(frames)) |
| 123 | +approx_nf = (5 - 2) * video.get_metadata()['video']['fps'][0] |
| 124 | +print("We can expect approx: ", approx_nf) |
| 125 | +print("Tensor size: ", frames[0].size()) |
| 126 | + |
| 127 | +#################################### |
| 128 | +# 2. Building a sample read_video function |
| 129 | +# ---------------------------------------------------------------------------------------- |
| 130 | +# We can utilize the methods above to build the read video function that follows |
| 131 | +# the same API to the existing ``read_video`` function. |
| 132 | + |
| 133 | + |
| 134 | +def example_read_video(video_object, start=0, end=None, read_video=True, read_audio=True): |
| 135 | + if end is None: |
| 136 | + end = float("inf") |
| 137 | + if end < start: |
| 138 | + raise ValueError( |
| 139 | + "end time should be larger than start time, got " |
| 140 | + "start time={} and end time={}".format(start, end) |
| 141 | + ) |
| 142 | + |
| 143 | + video_frames = torch.empty(0) |
| 144 | + video_pts = [] |
| 145 | + if read_video: |
| 146 | + video_object.set_current_stream("video") |
| 147 | + frames = [] |
| 148 | + for frame in itertools.takewhile(lambda x: x['pts'] <= end, video_object.seek(start)): |
| 149 | + frames.append(frame['data']) |
| 150 | + video_pts.append(frame['pts']) |
| 151 | + if len(frames) > 0: |
| 152 | + video_frames = torch.stack(frames, 0) |
| 153 | + |
| 154 | + audio_frames = torch.empty(0) |
| 155 | + audio_pts = [] |
| 156 | + if read_audio: |
| 157 | + video_object.set_current_stream("audio") |
| 158 | + frames = [] |
| 159 | + for frame in itertools.takewhile(lambda x: x['pts'] <= end, video_object.seek(start)): |
| 160 | + frames.append(frame['data']) |
| 161 | + video_pts.append(frame['pts']) |
| 162 | + if len(frames) > 0: |
| 163 | + audio_frames = torch.cat(frames, 0) |
| 164 | + |
| 165 | + return video_frames, audio_frames, (video_pts, audio_pts), video_object.get_metadata() |
| 166 | + |
| 167 | + |
| 168 | +# Total number of frames should be 327 for video and 523264 datapoints for audio |
| 169 | +vf, af, info, meta = example_read_video(video) |
| 170 | +print(vf.size(), af.size()) |
| 171 | + |
| 172 | +#################################### |
| 173 | +# 3. Building an example randomly sampled dataset (can be applied to training dataest of kinetics400) |
| 174 | +# ------------------------------------------------------------------------------------------------------- |
| 175 | +# Cool, so now we can use the same principle to make the sample dataset. |
| 176 | +# We suggest trying out iterable dataset for this purpose. |
| 177 | +# Here, we are going to build an example dataset that reads randomly selected 10 frames of video. |
| 178 | + |
| 179 | +#################################### |
| 180 | +# Make sample dataset |
| 181 | +import os |
| 182 | +os.makedirs("./dataset", exist_ok=True) |
| 183 | +os.makedirs("./dataset/1", exist_ok=True) |
| 184 | +os.makedirs("./dataset/2", exist_ok=True) |
| 185 | + |
| 186 | +#################################### |
| 187 | +# Download the videos |
| 188 | +from torchvision.datasets.utils import download_url |
| 189 | +download_url( |
| 190 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/WUzgd7C1pWA.mp4?raw=true", |
| 191 | + "./dataset/1", "WUzgd7C1pWA.mp4" |
| 192 | +) |
| 193 | +download_url( |
| 194 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/RATRACE_wave_f_nm_np1_fr_goo_37.avi?raw=true", |
| 195 | + "./dataset/1", |
| 196 | + "RATRACE_wave_f_nm_np1_fr_goo_37.avi" |
| 197 | +) |
| 198 | +download_url( |
| 199 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/SOX5yA1l24A.mp4?raw=true", |
| 200 | + "./dataset/2", |
| 201 | + "SOX5yA1l24A.mp4" |
| 202 | +) |
| 203 | +download_url( |
| 204 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/v_SoccerJuggling_g23_c01.avi?raw=true", |
| 205 | + "./dataset/2", |
| 206 | + "v_SoccerJuggling_g23_c01.avi" |
| 207 | +) |
| 208 | +download_url( |
| 209 | + "https://github.com/pytorch/vision/blob/master/test/assets/videos/v_SoccerJuggling_g24_c01.avi?raw=true", |
| 210 | + "./dataset/2", |
| 211 | + "v_SoccerJuggling_g24_c01.avi" |
| 212 | +) |
| 213 | + |
| 214 | +#################################### |
| 215 | +# Housekeeping and utilities |
| 216 | +import os |
| 217 | +import random |
| 218 | + |
| 219 | +from torchvision.datasets.folder import make_dataset |
| 220 | +from torchvision import transforms as t |
| 221 | + |
| 222 | + |
| 223 | +def _find_classes(dir): |
| 224 | + classes = [d.name for d in os.scandir(dir) if d.is_dir()] |
| 225 | + classes.sort() |
| 226 | + class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} |
| 227 | + return classes, class_to_idx |
| 228 | + |
| 229 | + |
| 230 | +def get_samples(root, extensions=(".mp4", ".avi")): |
| 231 | + _, class_to_idx = _find_classes(root) |
| 232 | + return make_dataset(root, class_to_idx, extensions=extensions) |
| 233 | + |
| 234 | +#################################### |
| 235 | +# We are going to define the dataset and some basic arguments. |
| 236 | +# We assume the structure of the FolderDataset, and add the following parameters: |
| 237 | +# |
| 238 | +# - ``clip_len``: length of a clip in frames |
| 239 | +# - ``frame_transform``: transform for every frame individually |
| 240 | +# - ``video_transform``: transform on a video sequence |
| 241 | +# |
| 242 | +# .. note:: |
| 243 | +# We actually add epoch size as using :func:`~torch.utils.data.IterableDataset` |
| 244 | +# class allows us to naturally oversample clips or images from each video if needed. |
| 245 | + |
| 246 | + |
| 247 | +class RandomDataset(torch.utils.data.IterableDataset): |
| 248 | + def __init__(self, root, epoch_size=None, frame_transform=None, video_transform=None, clip_len=16): |
| 249 | + super(RandomDataset).__init__() |
| 250 | + |
| 251 | + self.samples = get_samples(root) |
| 252 | + |
| 253 | + # Allow for temporal jittering |
| 254 | + if epoch_size is None: |
| 255 | + epoch_size = len(self.samples) |
| 256 | + self.epoch_size = epoch_size |
| 257 | + |
| 258 | + self.clip_len = clip_len |
| 259 | + self.frame_transform = frame_transform |
| 260 | + self.video_transform = video_transform |
| 261 | + |
| 262 | + def __iter__(self): |
| 263 | + for i in range(self.epoch_size): |
| 264 | + # Get random sample |
| 265 | + path, target = random.choice(self.samples) |
| 266 | + # Get video object |
| 267 | + vid = torchvision.io.VideoReader(path, "video") |
| 268 | + metadata = vid.get_metadata() |
| 269 | + video_frames = [] # video frame buffer |
| 270 | + |
| 271 | + # Seek and return frames |
| 272 | + max_seek = metadata["video"]['duration'][0] - (self.clip_len / metadata["video"]['fps'][0]) |
| 273 | + start = random.uniform(0., max_seek) |
| 274 | + for frame in itertools.islice(vid.seek(start), self.clip_len): |
| 275 | + video_frames.append(self.frame_transform(frame['data'])) |
| 276 | + current_pts = frame['pts'] |
| 277 | + # Stack it into a tensor |
| 278 | + video = torch.stack(video_frames, 0) |
| 279 | + if self.video_transform: |
| 280 | + video = self.video_transform(video) |
| 281 | + output = { |
| 282 | + 'path': path, |
| 283 | + 'video': video, |
| 284 | + 'target': target, |
| 285 | + 'start': start, |
| 286 | + 'end': current_pts} |
| 287 | + yield output |
| 288 | + |
| 289 | +#################################### |
| 290 | +# Given a path of videos in a folder structure, i.e: |
| 291 | +# |
| 292 | +# - dataset |
| 293 | +# - class 1 |
| 294 | +# - file 0 |
| 295 | +# - file 1 |
| 296 | +# - ... |
| 297 | +# - class 2 |
| 298 | +# - file 0 |
| 299 | +# - file 1 |
| 300 | +# - ... |
| 301 | +# - ... |
| 302 | +# |
| 303 | +# We can generate a dataloader and test the dataset. |
| 304 | + |
| 305 | + |
| 306 | +transforms = [t.Resize((112, 112))] |
| 307 | +frame_transform = t.Compose(transforms) |
| 308 | + |
| 309 | +dataset = RandomDataset("./dataset", epoch_size=None, frame_transform=frame_transform) |
| 310 | + |
| 311 | +#################################### |
| 312 | +from torch.utils.data import DataLoader |
| 313 | +loader = DataLoader(dataset, batch_size=12) |
| 314 | +data = {"video": [], 'start': [], 'end': [], 'tensorsize': []} |
| 315 | +for batch in loader: |
| 316 | + for i in range(len(batch['path'])): |
| 317 | + data['video'].append(batch['path'][i]) |
| 318 | + data['start'].append(batch['start'][i].item()) |
| 319 | + data['end'].append(batch['end'][i].item()) |
| 320 | + data['tensorsize'].append(batch['video'][i].size()) |
| 321 | +print(data) |
| 322 | + |
| 323 | +#################################### |
| 324 | +# 4. Data Visualization |
| 325 | +# ---------------------------------- |
| 326 | +# Example of visualized video |
| 327 | + |
| 328 | +import matplotlib.pylab as plt |
| 329 | + |
| 330 | +plt.figure(figsize=(12, 12)) |
| 331 | +for i in range(16): |
| 332 | + plt.subplot(4, 4, i + 1) |
| 333 | + plt.imshow(batch["video"][0, i, ...].permute(1, 2, 0)) |
| 334 | + plt.axis("off") |
| 335 | + |
| 336 | +#################################### |
| 337 | +# Cleanup the video and dataset: |
| 338 | +import os |
| 339 | +import shutil |
| 340 | +os.remove("./WUzgd7C1pWA.mp4") |
| 341 | +shutil.rmtree("./dataset") |
0 commit comments