@@ -123,13 +123,28 @@ def lraspp_mobilenet_v3_large(
123123 weights_backbone : Optional [MobileNet_V3_Large_Weights ] = MobileNet_V3_Large_Weights .IMAGENET1K_V1 ,
124124 ** kwargs : Any ,
125125) -> LRASPP :
126- """Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone.
126+ """Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
127+ `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.
127128
128129 Args:
129- weights (LRASPP_MobileNet_V3_Large_Weights, optional): The pretrained weights for the model
130- progress (bool): If True, displays a progress bar of the download to stderr
131- num_classes (int, optional): number of output classes of the model (including the background)
132- weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
130+ weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
131+ pretrained weights to use. See
132+ :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
133+ more details, and possible values. By default, no pre-trained
134+ weights are used.
135+ progress (bool, optional): If True, displays a progress bar of the
136+ download to stderr. Default is True.
137+ num_classes (int, optional): number of output classes of the model (including the background).
138+ aux_loss (bool, optional): If True, it uses an auxiliary loss.
139+ weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
140+ weights for the backbone.
141+ **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
142+ base class. Please refer to the `source code
143+ <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
144+ for more details about this class.
145+
146+ .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
147+ :members:
133148 """
134149 if kwargs .pop ("aux_loss" , False ):
135150 raise NotImplementedError ("This model does not use auxiliary loss" )
0 commit comments