|
| 1 | +import contextlib |
| 2 | +import os |
| 3 | +import torch |
| 4 | +import unittest |
| 5 | + |
| 6 | +from torchvision import io |
| 7 | +from torchvision.datasets.video_utils import VideoClips, unfold, RandomClipSampler |
| 8 | + |
| 9 | +from common_utils import get_tmp_dir |
| 10 | + |
| 11 | + |
| 12 | +@contextlib.contextmanager |
| 13 | +def get_list_of_videos(num_videos=5, sizes=None, fps=None): |
| 14 | + with get_tmp_dir() as tmp_dir: |
| 15 | + names = [] |
| 16 | + for i in range(num_videos): |
| 17 | + if sizes is None: |
| 18 | + size = 5 * (i + 1) |
| 19 | + else: |
| 20 | + size = sizes[i] |
| 21 | + if fps is None: |
| 22 | + f = 5 |
| 23 | + else: |
| 24 | + f = fps[i] |
| 25 | + data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8) |
| 26 | + name = os.path.join(tmp_dir, "{}.mp4".format(i)) |
| 27 | + names.append(name) |
| 28 | + io.write_video(name, data, fps=f) |
| 29 | + |
| 30 | + yield names |
| 31 | + |
| 32 | + |
| 33 | +class Tester(unittest.TestCase): |
| 34 | + |
| 35 | + def test_unfold(self): |
| 36 | + a = torch.arange(7) |
| 37 | + |
| 38 | + r = unfold(a, 3, 3, 1) |
| 39 | + expected = torch.tensor([ |
| 40 | + [0, 1, 2], |
| 41 | + [3, 4, 5], |
| 42 | + ]) |
| 43 | + self.assertTrue(r.equal(expected)) |
| 44 | + |
| 45 | + r = unfold(a, 3, 2, 1) |
| 46 | + expected = torch.tensor([ |
| 47 | + [0, 1, 2], |
| 48 | + [2, 3, 4], |
| 49 | + [4, 5, 6] |
| 50 | + ]) |
| 51 | + self.assertTrue(r.equal(expected)) |
| 52 | + |
| 53 | + r = unfold(a, 3, 2, 2) |
| 54 | + expected = torch.tensor([ |
| 55 | + [0, 2, 4], |
| 56 | + [2, 4, 6], |
| 57 | + ]) |
| 58 | + self.assertTrue(r.equal(expected)) |
| 59 | + |
| 60 | + def test_video_clips(self): |
| 61 | + with get_list_of_videos(num_videos=3) as video_list: |
| 62 | + video_clips = VideoClips(video_list, 5, 5) |
| 63 | + self.assertEqual(video_clips.num_clips(), 1 + 2 + 3) |
| 64 | + for i, (v_idx, c_idx) in enumerate([(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)]): |
| 65 | + video_idx, clip_idx = video_clips.get_clip_location(i) |
| 66 | + self.assertEqual(video_idx, v_idx) |
| 67 | + self.assertEqual(clip_idx, c_idx) |
| 68 | + |
| 69 | + video_clips = VideoClips(video_list, 6, 6) |
| 70 | + self.assertEqual(video_clips.num_clips(), 0 + 1 + 2) |
| 71 | + for i, (v_idx, c_idx) in enumerate([(1, 0), (2, 0), (2, 1)]): |
| 72 | + video_idx, clip_idx = video_clips.get_clip_location(i) |
| 73 | + self.assertEqual(video_idx, v_idx) |
| 74 | + self.assertEqual(clip_idx, c_idx) |
| 75 | + |
| 76 | + video_clips = VideoClips(video_list, 6, 1) |
| 77 | + self.assertEqual(video_clips.num_clips(), 0 + (10 - 6 + 1) + (15 - 6 + 1)) |
| 78 | + for i, v_idx, c_idx in [(0, 1, 0), (4, 1, 4), (5, 2, 0), (6, 2, 1)]: |
| 79 | + video_idx, clip_idx = video_clips.get_clip_location(i) |
| 80 | + self.assertEqual(video_idx, v_idx) |
| 81 | + self.assertEqual(clip_idx, c_idx) |
| 82 | + |
| 83 | + def test_video_sampler(self): |
| 84 | + with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
| 85 | + video_clips = VideoClips(video_list, 5, 5) |
| 86 | + sampler = RandomClipSampler(video_clips, 3) |
| 87 | + self.assertEqual(len(sampler), 3 * 3) |
| 88 | + indices = torch.tensor(list(iter(sampler))) |
| 89 | + videos = indices // 5 |
| 90 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 91 | + self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2]))) |
| 92 | + self.assertTrue(count.equal(torch.tensor([3, 3, 3]))) |
| 93 | + |
| 94 | + def test_video_sampler_unequal(self): |
| 95 | + with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
| 96 | + video_clips = VideoClips(video_list, 5, 5) |
| 97 | + sampler = RandomClipSampler(video_clips, 3) |
| 98 | + self.assertEqual(len(sampler), 2 + 3 + 3) |
| 99 | + indices = list(iter(sampler)) |
| 100 | + self.assertIn(0, indices) |
| 101 | + self.assertIn(1, indices) |
| 102 | + # remove elements of the first video, to simplify testing |
| 103 | + indices.remove(0) |
| 104 | + indices.remove(1) |
| 105 | + indices = torch.tensor(indices) - 2 |
| 106 | + videos = indices // 5 |
| 107 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 108 | + self.assertTrue(v_idxs.equal(torch.tensor([0, 1]))) |
| 109 | + self.assertTrue(count.equal(torch.tensor([3, 3]))) |
| 110 | + |
| 111 | + def test_video_clips_custom_fps(self): |
| 112 | + with get_list_of_videos(num_videos=3, sizes=[12, 12, 12], fps=[3, 4, 6]) as video_list: |
| 113 | + num_frames = 4 |
| 114 | + for fps in [1, 3, 4, 10]: |
| 115 | + video_clips = VideoClips(video_list, num_frames, num_frames, fps) |
| 116 | + for i in range(video_clips.num_clips()): |
| 117 | + video, audio, info, video_idx = video_clips.get_clip(i) |
| 118 | + self.assertEqual(video.shape[0], num_frames) |
| 119 | + self.assertEqual(info["video_fps"], fps) |
| 120 | + # TODO add tests checking that the content is right |
| 121 | + |
| 122 | + def test_compute_clips_for_video(self): |
| 123 | + video_pts = torch.arange(30) |
| 124 | + # case 1: single clip |
| 125 | + num_frames = 13 |
| 126 | + orig_fps = 30 |
| 127 | + duration = float(len(video_pts)) / orig_fps |
| 128 | + new_fps = 13 |
| 129 | + clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames, |
| 130 | + orig_fps, new_fps) |
| 131 | + resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps) |
| 132 | + self.assertEqual(len(clips), 1) |
| 133 | + self.assertTrue(clips.equal(idxs)) |
| 134 | + self.assertTrue(idxs[0].equal(resampled_idxs)) |
| 135 | + |
| 136 | + # case 2: all frames appear only once |
| 137 | + num_frames = 4 |
| 138 | + orig_fps = 30 |
| 139 | + duration = float(len(video_pts)) / orig_fps |
| 140 | + new_fps = 12 |
| 141 | + clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames, |
| 142 | + orig_fps, new_fps) |
| 143 | + resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps) |
| 144 | + self.assertEqual(len(clips), 3) |
| 145 | + self.assertTrue(clips.equal(idxs)) |
| 146 | + self.assertTrue(idxs.flatten().equal(resampled_idxs)) |
| 147 | + |
| 148 | + |
| 149 | +if __name__ == '__main__': |
| 150 | + unittest.main() |
0 commit comments