|
13 | 13 | from torchvision.datasets.video_utils import VideoClips, unfold |
14 | 14 | from torchvision import get_video_backend |
15 | 15 |
|
16 | | -from common_utils import get_tmp_dir, assert_equal |
17 | | - |
18 | | - |
19 | | -@contextlib.contextmanager |
20 | | -def get_list_of_videos(num_videos=5, sizes=None, fps=None): |
21 | | - with get_tmp_dir() as tmp_dir: |
22 | | - names = [] |
23 | | - for i in range(num_videos): |
24 | | - if sizes is None: |
25 | | - size = 5 * (i + 1) |
26 | | - else: |
27 | | - size = sizes[i] |
28 | | - if fps is None: |
29 | | - f = 5 |
30 | | - else: |
31 | | - f = fps[i] |
32 | | - data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8) |
33 | | - name = os.path.join(tmp_dir, "{}.mp4".format(i)) |
34 | | - names.append(name) |
35 | | - io.write_video(name, data, fps=f) |
36 | | - |
37 | | - yield names |
| 16 | +from common_utils import get_list_of_videos, assert_equal |
38 | 17 |
|
39 | 18 |
|
40 | 19 | @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av") |
41 | 20 | class TestDatasetsSamplers: |
42 | | - def test_random_clip_sampler(self): |
43 | | - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
44 | | - video_clips = VideoClips(video_list, 5, 5) |
45 | | - sampler = RandomClipSampler(video_clips, 3) |
46 | | - assert len(sampler) == 3 * 3 |
47 | | - indices = torch.tensor(list(iter(sampler))) |
48 | | - videos = torch.div(indices, 5, rounding_mode='floor') |
49 | | - v_idxs, count = torch.unique(videos, return_counts=True) |
50 | | - assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
51 | | - assert_equal(count, torch.tensor([3, 3, 3])) |
| 21 | + def test_random_clip_sampler(self, tmpdir): |
| 22 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 23 | + video_clips = VideoClips(video_list, 5, 5) |
| 24 | + sampler = RandomClipSampler(video_clips, 3) |
| 25 | + assert len(sampler) == 3 * 3 |
| 26 | + indices = torch.tensor(list(iter(sampler))) |
| 27 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 28 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 29 | + assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
| 30 | + assert_equal(count, torch.tensor([3, 3, 3])) |
52 | 31 |
|
53 | | - def test_random_clip_sampler_unequal(self): |
54 | | - with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
55 | | - video_clips = VideoClips(video_list, 5, 5) |
56 | | - sampler = RandomClipSampler(video_clips, 3) |
57 | | - assert len(sampler) == 2 + 3 + 3 |
58 | | - indices = list(iter(sampler)) |
59 | | - assert 0 in indices |
60 | | - assert 1 in indices |
61 | | - # remove elements of the first video, to simplify testing |
62 | | - indices.remove(0) |
63 | | - indices.remove(1) |
64 | | - indices = torch.tensor(indices) - 2 |
65 | | - videos = torch.div(indices, 5, rounding_mode='floor') |
66 | | - v_idxs, count = torch.unique(videos, return_counts=True) |
67 | | - assert_equal(v_idxs, torch.tensor([0, 1])) |
68 | | - assert_equal(count, torch.tensor([3, 3])) |
| 32 | + def test_random_clip_sampler_unequal(self, tmpdir): |
| 33 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) |
| 34 | + video_clips = VideoClips(video_list, 5, 5) |
| 35 | + sampler = RandomClipSampler(video_clips, 3) |
| 36 | + assert len(sampler) == 2 + 3 + 3 |
| 37 | + indices = list(iter(sampler)) |
| 38 | + assert 0 in indices |
| 39 | + assert 1 in indices |
| 40 | + # remove elements of the first video, to simplify testing |
| 41 | + indices.remove(0) |
| 42 | + indices.remove(1) |
| 43 | + indices = torch.tensor(indices) - 2 |
| 44 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 45 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 46 | + assert_equal(v_idxs, torch.tensor([0, 1])) |
| 47 | + assert_equal(count, torch.tensor([3, 3])) |
69 | 48 |
|
70 | | - def test_uniform_clip_sampler(self): |
71 | | - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
72 | | - video_clips = VideoClips(video_list, 5, 5) |
73 | | - sampler = UniformClipSampler(video_clips, 3) |
74 | | - assert len(sampler) == 3 * 3 |
75 | | - indices = torch.tensor(list(iter(sampler))) |
76 | | - videos = torch.div(indices, 5, rounding_mode='floor') |
77 | | - v_idxs, count = torch.unique(videos, return_counts=True) |
78 | | - assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
79 | | - assert_equal(count, torch.tensor([3, 3, 3])) |
80 | | - assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])) |
| 49 | + def test_uniform_clip_sampler(self, tmpdir): |
| 50 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 51 | + video_clips = VideoClips(video_list, 5, 5) |
| 52 | + sampler = UniformClipSampler(video_clips, 3) |
| 53 | + assert len(sampler) == 3 * 3 |
| 54 | + indices = torch.tensor(list(iter(sampler))) |
| 55 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 56 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 57 | + assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
| 58 | + assert_equal(count, torch.tensor([3, 3, 3])) |
| 59 | + assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])) |
81 | 60 |
|
82 | | - def test_uniform_clip_sampler_insufficient_clips(self): |
83 | | - with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
84 | | - video_clips = VideoClips(video_list, 5, 5) |
85 | | - sampler = UniformClipSampler(video_clips, 3) |
86 | | - assert len(sampler) == 3 * 3 |
87 | | - indices = torch.tensor(list(iter(sampler))) |
88 | | - assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])) |
| 61 | + def test_uniform_clip_sampler_insufficient_clips(self, tmpdir): |
| 62 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) |
| 63 | + video_clips = VideoClips(video_list, 5, 5) |
| 64 | + sampler = UniformClipSampler(video_clips, 3) |
| 65 | + assert len(sampler) == 3 * 3 |
| 66 | + indices = torch.tensor(list(iter(sampler))) |
| 67 | + assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])) |
89 | 68 |
|
90 | | - def test_distributed_sampler_and_uniform_clip_sampler(self): |
91 | | - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
92 | | - video_clips = VideoClips(video_list, 5, 5) |
93 | | - clip_sampler = UniformClipSampler(video_clips, 3) |
| 69 | + def test_distributed_sampler_and_uniform_clip_sampler(self, tmpdir): |
| 70 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 71 | + video_clips = VideoClips(video_list, 5, 5) |
| 72 | + clip_sampler = UniformClipSampler(video_clips, 3) |
94 | 73 |
|
95 | | - distributed_sampler_rank0 = DistributedSampler( |
96 | | - clip_sampler, |
97 | | - num_replicas=2, |
98 | | - rank=0, |
99 | | - group_size=3, |
100 | | - ) |
101 | | - indices = torch.tensor(list(iter(distributed_sampler_rank0))) |
102 | | - assert len(distributed_sampler_rank0) == 6 |
103 | | - assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14])) |
| 74 | + distributed_sampler_rank0 = DistributedSampler( |
| 75 | + clip_sampler, |
| 76 | + num_replicas=2, |
| 77 | + rank=0, |
| 78 | + group_size=3, |
| 79 | + ) |
| 80 | + indices = torch.tensor(list(iter(distributed_sampler_rank0))) |
| 81 | + assert len(distributed_sampler_rank0) == 6 |
| 82 | + assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14])) |
104 | 83 |
|
105 | | - distributed_sampler_rank1 = DistributedSampler( |
106 | | - clip_sampler, |
107 | | - num_replicas=2, |
108 | | - rank=1, |
109 | | - group_size=3, |
110 | | - ) |
111 | | - indices = torch.tensor(list(iter(distributed_sampler_rank1))) |
112 | | - assert len(distributed_sampler_rank1) == 6 |
113 | | - assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4])) |
| 84 | + distributed_sampler_rank1 = DistributedSampler( |
| 85 | + clip_sampler, |
| 86 | + num_replicas=2, |
| 87 | + rank=1, |
| 88 | + group_size=3, |
| 89 | + ) |
| 90 | + indices = torch.tensor(list(iter(distributed_sampler_rank1))) |
| 91 | + assert len(distributed_sampler_rank1) == 6 |
| 92 | + assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4])) |
114 | 93 |
|
115 | 94 |
|
116 | 95 | if __name__ == '__main__': |
|
0 commit comments