Skip to content

Commit 2589a79

Browse files
prabhat00155facebook-github-bot
authored andcommitted
[fbsync] Updated classification README to refer to torch.cuda.amp (#4570)
Reviewed By: NicolasHug Differential Revision: D31505553 fbshipit-source-id: 2bd5dcfd0d0ab9cdb6454c004eb40a52d252fc28
1 parent 135df9d commit 2589a79

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

references/classification/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -110,13 +110,13 @@ torchrun --nproc_per_node=8 train.py\
110110
Here `$MODEL` is one of `regnet_x_32gf`, `regnet_y_16gf` and `regnet_y_32gf`.
111111

112112
## Mixed precision training
113-
Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [NVIDIA Apex extension](https://github.com/NVIDIA/apex).
113+
Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [torch.cuda.amp](https://pytorch.org/docs/stable/amp.html?highlight=amp#module-torch.cuda.amp).
114114

115-
Mixed precision training makes use of both FP32 and FP16 precisions where appropriate. FP16 operations can leverage the Tensor cores on NVIDIA GPUs (Volta, Turing or newer architectures) for improved throughput, generally without loss in model accuracy. Mixed precision training also often allows larger batch sizes. GPU automatic mixed precision training for Pytorch Vision can be enabled via the flag value `--apex=True`.
115+
Mixed precision training makes use of both FP32 and FP16 precisions where appropriate. FP16 operations can leverage the Tensor cores on NVIDIA GPUs (Volta, Turing or newer architectures) for improved throughput, generally without loss in model accuracy. Mixed precision training also often allows larger batch sizes. GPU automatic mixed precision training for Pytorch Vision can be enabled via the flag value `--amp=True`.
116116

117117
```
118118
torchrun --nproc_per_node=8 train.py\
119-
--model resnext50_32x4d --epochs 100 --apex
119+
--model resnext50_32x4d --epochs 100 --amp
120120
```
121121

122122
## Quantized

0 commit comments

Comments
 (0)