|
3 | 3 |
|
4 | 4 | from torchvision.models import get_weight |
5 | 5 | from torchvision.models.alexnet import alexnet |
6 | | -from torchvision.models.convnext import convnext_tiny, convnext_small, convnext_base, convnext_large |
7 | | -from torchvision.models.densenet import densenet121, densenet169, densenet201, densenet161 |
| 6 | +from torchvision.models.convnext import convnext_base, convnext_large, convnext_small, convnext_tiny |
| 7 | +from torchvision.models.densenet import densenet121, densenet161, densenet169, densenet201 |
8 | 8 | from torchvision.models.efficientnet import ( |
9 | 9 | efficientnet_b0, |
10 | 10 | efficientnet_b1, |
|
14 | 14 | efficientnet_b5, |
15 | 15 | efficientnet_b6, |
16 | 16 | efficientnet_b7, |
17 | | - efficientnet_v2_s, |
18 | | - efficientnet_v2_m, |
19 | 17 | efficientnet_v2_l, |
| 18 | + efficientnet_v2_m, |
| 19 | + efficientnet_v2_s, |
20 | 20 | ) |
21 | 21 | from torchvision.models.googlenet import googlenet |
22 | 22 | from torchvision.models.inception import inception_v3 |
|
25 | 25 | from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small |
26 | 26 | from torchvision.models.optical_flow import raft_large, raft_small |
27 | 27 | from torchvision.models.regnet import ( |
28 | | - regnet_y_400mf, |
29 | | - regnet_y_800mf, |
30 | | - regnet_y_1_6gf, |
31 | | - regnet_y_3_2gf, |
32 | | - regnet_y_8gf, |
33 | | - regnet_y_16gf, |
34 | | - regnet_y_32gf, |
35 | | - regnet_y_128gf, |
36 | | - regnet_x_400mf, |
37 | | - regnet_x_800mf, |
| 28 | + regnet_x_16gf, |
38 | 29 | regnet_x_1_6gf, |
| 30 | + regnet_x_32gf, |
39 | 31 | regnet_x_3_2gf, |
| 32 | + regnet_x_400mf, |
| 33 | + regnet_x_800mf, |
40 | 34 | regnet_x_8gf, |
41 | | - regnet_x_16gf, |
42 | | - regnet_x_32gf, |
| 35 | + regnet_y_128gf, |
| 36 | + regnet_y_16gf, |
| 37 | + regnet_y_1_6gf, |
| 38 | + regnet_y_32gf, |
| 39 | + regnet_y_3_2gf, |
| 40 | + regnet_y_400mf, |
| 41 | + regnet_y_800mf, |
| 42 | + regnet_y_8gf, |
43 | 43 | ) |
44 | 44 | from torchvision.models.resnet import ( |
| 45 | + resnet101, |
| 46 | + resnet152, |
45 | 47 | resnet18, |
46 | 48 | resnet34, |
47 | 49 | resnet50, |
48 | | - resnet101, |
49 | | - resnet152, |
50 | | - resnext50_32x4d, |
51 | 50 | resnext101_32x8d, |
52 | | - wide_resnet50_2, |
| 51 | + resnext50_32x4d, |
53 | 52 | wide_resnet101_2, |
| 53 | + wide_resnet50_2, |
54 | 54 | ) |
55 | 55 | from torchvision.models.segmentation import ( |
56 | | - fcn_resnet50, |
57 | | - fcn_resnet101, |
58 | | - deeplabv3_resnet50, |
59 | | - deeplabv3_resnet101, |
60 | 56 | deeplabv3_mobilenet_v3_large, |
| 57 | + deeplabv3_resnet101, |
| 58 | + deeplabv3_resnet50, |
| 59 | + fcn_resnet101, |
| 60 | + fcn_resnet50, |
61 | 61 | lraspp_mobilenet_v3_large, |
62 | 62 | ) |
63 | 63 | from torchvision.models.shufflenetv2 import ( |
|
67 | 67 | shufflenet_v2_x2_0, |
68 | 68 | ) |
69 | 69 | from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1 |
70 | | -from torchvision.models.vgg import vgg11, vgg13, vgg16, vgg19, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn |
71 | | -from torchvision.models.vision_transformer import ( |
72 | | - vit_b_16, |
73 | | - vit_b_32, |
74 | | - vit_l_16, |
75 | | - vit_l_32, |
76 | | - vit_h_14, |
77 | | -) |
| 70 | +from torchvision.models.vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn |
| 71 | +from torchvision.models.vision_transformer import vit_b_16, vit_b_32, vit_h_14, vit_l_16, vit_l_32 |
0 commit comments