@@ -11,7 +11,7 @@ def _is_tensor_a_torch_image(x: Tensor) -> bool:
1111    return  x .ndim  >=  2 
1212
1313
14- def  _assert_image_tensor (img ) :
14+ def  _assert_image_tensor (img :  Tensor )  ->   None :
1515    if  not  _is_tensor_a_torch_image (img ):
1616        raise  TypeError ("Tensor is not a torch image." )
1717
@@ -317,7 +317,7 @@ def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
317317    return  (ratio  *  img1  +  (1.0  -  ratio ) *  img2 ).clamp (0 , bound ).to (img1 .dtype )
318318
319319
320- def  _rgb2hsv (img ) :
320+ def  _rgb2hsv (img :  Tensor )  ->   Tensor :
321321    r , g , b  =  img .unbind (dim = - 3 )
322322
323323    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/ 
@@ -356,7 +356,7 @@ def _rgb2hsv(img):
356356    return  torch .stack ((h , s , maxc ), dim = - 3 )
357357
358358
359- def  _hsv2rgb (img ) :
359+ def  _hsv2rgb (img :  Tensor )  ->   Tensor :
360360    h , s , v  =  img .unbind (dim = - 3 )
361361    i  =  torch .floor (h  *  6.0 )
362362    f  =  (h  *  6.0 ) -  i 
@@ -388,15 +388,15 @@ def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
388388
389389    in_sizes  =  img .size ()
390390
391-     x_indices  =  [i  for  i  in  range (in_sizes [- 1 ])]  # [0, 1, 2, 3, ...] 
391+     _x_indices  =  [i  for  i  in  range (in_sizes [- 1 ])]  # [0, 1, 2, 3, ...] 
392392    left_indices  =  [i  for  i  in  range (padding [0 ] -  1 , - 1 , - 1 )]  # e.g. [3, 2, 1, 0] 
393393    right_indices  =  [- (i  +  1 ) for  i  in  range (padding [1 ])]  # e.g. [-1, -2, -3] 
394-     x_indices  =  torch .tensor (left_indices  +  x_indices  +  right_indices , device = img .device )
394+     x_indices  =  torch .tensor (left_indices  +  _x_indices  +  right_indices , device = img .device )
395395
396-     y_indices  =  [i  for  i  in  range (in_sizes [- 2 ])]
396+     _y_indices  =  [i  for  i  in  range (in_sizes [- 2 ])]
397397    top_indices  =  [i  for  i  in  range (padding [2 ] -  1 , - 1 , - 1 )]
398398    bottom_indices  =  [- (i  +  1 ) for  i  in  range (padding [3 ])]
399-     y_indices  =  torch .tensor (top_indices  +  y_indices  +  bottom_indices , device = img .device )
399+     y_indices  =  torch .tensor (top_indices  +  _y_indices  +  bottom_indices , device = img .device )
400400
401401    ndim  =  img .ndim 
402402    if  ndim  ==  3 :
@@ -560,13 +560,13 @@ def resize(
560560
561561
562562def  _assert_grid_transform_inputs (
563-          img : Tensor ,
564-          matrix : Optional [List [float ]],
565-          interpolation : str ,
566-          fill : Optional [List [float ]],
567-          supported_interpolation_modes : List [str ],
568-          coeffs : Optional [List [float ]] =  None ,
569- ):
563+     img : Tensor ,
564+     matrix : Optional [List [float ]],
565+     interpolation : str ,
566+     fill : Optional [List [float ]],
567+     supported_interpolation_modes : List [str ],
568+     coeffs : Optional [List [float ]] =  None ,
569+ )  ->   None :
570570
571571    if  not  (isinstance (img , torch .Tensor )):
572572        raise  TypeError ("Input img should be Tensor" )
@@ -612,7 +612,7 @@ def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor
612612    return  img , need_cast , need_squeeze , out_dtype 
613613
614614
615- def  _cast_squeeze_out (img : Tensor , need_cast : bool , need_squeeze : bool , out_dtype : torch .dtype ):
615+ def  _cast_squeeze_out (img : Tensor , need_cast : bool , need_squeeze : bool , out_dtype : torch .dtype )  ->   Tensor :
616616    if  need_squeeze :
617617        img  =  img .squeeze (dim = 0 )
618618
@@ -732,7 +732,7 @@ def rotate(
732732    return  _apply_grid_transform (img , grid , interpolation , fill = fill )
733733
734734
735- def  _perspective_grid (coeffs : List [float ], ow : int , oh : int , dtype : torch .dtype , device : torch .device ):
735+ def  _perspective_grid (coeffs : List [float ], ow : int , oh : int , dtype : torch .dtype , device : torch .device )  ->   Tensor :
736736    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/ 
737737    # src/libImaging/Geometry.c#L394 
738738
@@ -922,7 +922,7 @@ def autocontrast(img: Tensor) -> Tensor:
922922    return  ((img  -  minimum ) *  scale ).clamp (0 , bound ).to (img .dtype )
923923
924924
925- def  _scale_channel (img_chan ) :
925+ def  _scale_channel (img_chan :  Tensor )  ->   Tensor :
926926    # TODO: we should expect bincount to always be faster than histc, but this 
927927    # isn't always the case. Once 
928928    # https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if 
0 commit comments