diff --git a/prototype_source/lite_interpreter.rst b/prototype_source/lite_interpreter.rst new file mode 100644 index 00000000000..bb3efe44f46 --- /dev/null +++ b/prototype_source/lite_interpreter.rst @@ -0,0 +1,221 @@ +(Prototype) Introduce lite interpreter workflow in Android and iOS +================================================================== + +**Author**: `Chen Lai `_, `Martin Yuan `_ + +Introduction +------------ + +This tutorial introduces the steps to use lite interpreter on iOS and Android. We'll be using the ImageSegmentation demo app as an example. Since lite interpreter is currently in the prototype stage, a custom pytorch binary from source is required. + + +Android +------------------- +Get ImageSegmentation demo app in Android: https://github.com/pytorch/android-demo-app/tree/master/ImageSegmentation + +1. **Prepare model**: Prepare the lite interpreter version of model by run the script below to generate the scripted model `deeplabv3_scripted.pt` and `deeplabv3_scripted.ptl` + +.. code:: python + + import torch + + model = torch.hub.load('pytorch/vision:v0.7.0', 'deeplabv3_resnet50', pretrained=True) + model.eval() + + scripted_module = torch.jit.script(model) + # Export full jit version model (not compatible lite interpreter), leave it here for comparison + scripted_module.save("deeplabv3_scripted.pt") + # Export lite interpreter version model (compatible with lite interpreter) + scripted_module._save_for_lite_interpreter("deeplabv3_scripted.ptl") + +2. **Build libtorch lite for android**: Build libtorch for android for all 4 android abis (``armeabi-v7a``, ``arm64-v8a``, ``x86``, ``x86_64``) ``BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh``. For example, if it will be tested on Pixel 4 emulator with ``x86``, use cmd ``BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh x86`` to specify abi to save built time. After the build finish, it will show the library path: + + +.. code-block:: bash + + BUILD SUCCESSFUL in 55s + 134 actionable tasks: 22 executed, 112 up-to-date + + find /Users/chenlai/pytorch/android -type f -name '*aar' + + xargs ls -lah + -rw-r--r-- 1 chenlai staff 13M Feb 11 11:48 /Users/chenlai/pytorch/android/pytorch_android/build/outputs/aar/pytorch_android-release.aar + -rw-r--r-- 1 chenlai staff 36K Feb 9 16:45 /Users/chenlai/pytorch/android/pytorch_android_torchvision/build/outputs/aar/pytorch_android_torchvision-release.aar + +3. **Use the PyTorch Android libraries built from source in the ImageSegmentation app**: Create a folder `libs` in the path, the path from repository root will be `ImageSegmentation/app/libs`. Copy `pytorch_android-release` to the path ``ImageSegmentation/app/libs/pytorch_android-release.aar``. Copy `pytorch_android_torchvision` (downloaded from `Pytorch Android Torchvision Nightly `_) to the path ``ImageSegmentation/app/libs/pytorch_android_torchvision.aar``. Update the `dependencies` part of ``ImageSegmentation/app/build.gradle`` to + +.. code:: gradle + + dependencies { + implementation 'androidx.appcompat:appcompat:1.2.0' + implementation 'androidx.constraintlayout:constraintlayout:2.0.2' + testImplementation 'junit:junit:4.12' + androidTestImplementation 'androidx.test.ext:junit:1.1.2' + androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0' + + + implementation(name:'pytorch_android-release', ext:'aar') + implementation(name:'pytorch_android_torchvision', ext:'aar') + + implementation 'com.android.support:appcompat-v7:28.0.0' + implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3' + } + +Update `all projects` part in ``ImageSegmentation/build.gradle`` to + + +.. code:: gradle + + allprojects { + repositories { + google() + jcenter() + flatDir { + dirs 'libs' + } + } + } + +4. **Update model loader api**: Update ``ImageSegmentation/app/src/main/java/org/pytorch/imagesegmentation/MainActivity.java`` by + + 4.1 Add new import: `import org.pytorch.LiteModuleLoader` + + 4.2 Replace the way to load pytorch lite model + +.. code:: java + + // mModule = Module.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.pt")); + mModule = LiteModuleLoader.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.ptl")); + +5. **Test app**: Build and run the `ImageSegmentation` app in Android Studio + +iOS +------------------- +Get ImageSegmentation demo app in iOS: https://github.com/pytorch/ios-demo-app/tree/master/ImageSegmentation + +1. **Prepare model**: Same as Android. + +2. **Build libtorch lite for iOS**: + +.. code-block:: bash + + BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=SIMULATOR BUILD_LITE_INTERPRETER=1 ./scripts/build_ios.sh + + +3. **Remove Cocoapods from the project** (this step is only needed if you ran `pod install`): + +.. code-block:: bash + + pod deintegrate + +4. **Link ImageSegmentation demo app with the custom built library**: +Open your project in XCode, go to your project Target’s **Build Phases - Link Binaries With Libraries**, click the **+** sign and add all the library files located in `build_ios/install/lib`. Navigate to the project **Build Settings**, set the value **Header Search Paths** to `build_ios/install/include` and **Library Search Paths** to `build_ios/install/lib`. +In the build settings, search for **other linker flags**. Add a custom linker flag below +``` +-all_load +``` +Finally, disable bitcode for your target by selecting the Build Settings, searching for Enable Bitcode, and set the value to **No**. + +5. **Update library and api** + + 5.1 Update ``TorchModule.mm``: To use the custom built libraries the project, replace `#import ` (in ``TorchModule.mm``) which is needed when using LibTorch via Cocoapods with the code below: + +.. code-block:: swift + + //#import + #include "ATen/ATen.h" + #include "caffe2/core/timer.h" + #include "caffe2/utils/string_utils.h" + #include "torch/csrc/autograd/grad_mode.h" + #include "torch/script.h" + #include + #include + #include + #include + #include + +.. code-block:: swift + + @implementation TorchModule { + @protected + // torch::jit::script::Module _impl; + torch::jit::mobile::Module _impl; + } + + - (nullable instancetype)initWithFileAtPath:(NSString*)filePath { + self = [super init]; + if (self) { + try { + _impl = torch::jit::_load_for_mobile(filePath.UTF8String); + // _impl = torch::jit::load(filePath.UTF8String); + // _impl.eval(); + } catch (const std::exception& exception) { + NSLog(@"%s", exception.what()); + return nil; + } + } + return self; + } + + +5.2 Update ``ViewController.swift`` + +.. code-block:: swift + + // if let filePath = Bundle.main.path(forResource: + // "deeplabv3_scripted", ofType: "pt"), + // let module = TorchModule(fileAtPath: filePath) { + // return module + // } else { + // fatalError("Can't find the model file!") + // } + if let filePath = Bundle.main.path(forResource: + "deeplabv3_scripted", ofType: "ptl"), + let module = TorchModule(fileAtPath: filePath) { + return module + } else { + fatalError("Can't find the model file!") + } + +6. Build and test the app in Xcode. + +How to use lite interpreter + custom build +------------------------------------------ +1. To dump the operators in your model, say `deeplabv3_scripted`, run the following lines of Python code: + +.. code-block:: python + + # Dump list of operators used by deeplabv3_scripted: + import torch, yaml + model = torch.jit.load('deeplabv3_scripted.ptl') + ops = torch.jit.export_opnames(model) + with open('deeplabv3_scripted.yaml', 'w') as output: + yaml.dump(ops, output) + +In the snippet above, you first need to load the ScriptModule. Then, use export_opnames to return a list of operator names of the ScriptModule and its submodules. Lastly, save the result in a yaml file. The yaml file can be generated for any PyTorch 1.4.0 or above version. You can do that by checking the value of `torch.__version__`. + +2. To run the build script locally with the prepared yaml list of operators, pass in the yaml file generate from the last step into the environment variable SELECTED_OP_LIST. Also in the arguments, specify BUILD_PYTORCH_MOBILE=1 as well as the platform/architechture type. + +**iOS**: Take the simulator build for example, the command should be: + +.. code-block:: bash + + SELECTED_OP_LIST=deeplabv3_scripted.yaml BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=SIMULATOR BUILD_LITE_INTERPRETER=1 ./scripts/build_ios.sh + +**Android**: Take the x86 build for example, the command should be: + +.. code-block:: bash + + SELECTED_OP_LIST=deeplabv3_scripted.yaml BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh x86 + + +Conclusion +---------- + +In this tutorial, we demonstrated how to use lite interpreter in Android and iOS app. We walked through an Image Segmentation example to show how to dump the model, build torch library from source and use the new api to run model. Please be aware of that lite interpreter is still under development, more library size reduction will be introduced in the future. APIs are subject to change in the future versions. + +Thanks for reading! As always, we welcome any feedback, so please create an issue `here `_ if you have any. + +Learn More +---------- + +- To learn more about PyTorch Mobile, please refer to `PyTorch Mobile Home Page `_ +- To learn more about Image Segmentation, please refer to the `Image Segmentation DeepLabV3 on Android Recipe `_ diff --git a/prototype_source/mobile_interpreter.rst b/prototype_source/mobile_interpreter.rst deleted file mode 100644 index 62e0449324d..00000000000 --- a/prototype_source/mobile_interpreter.rst +++ /dev/null @@ -1,198 +0,0 @@ -(beta) Efficient mobile interpreter in Android and iOS -================================================================== - -**Author**: `Chen Lai `_, `Martin Yuan `_ - -Introduction ------------- - -This tutorial introduces the steps to use PyTorch's efficient interpreter on iOS and Android. We will be using an Image Segmentation demo application as an example. - -This application will take advantage of the pre-built interpreter libraries available for Android and iOS, which can be used directly with Maven (Android) and CocoaPods (iOS). It is important to note that the pre-built libraries are the available for simplicity, but further size optimization can be achieved with by utilizing PyTorch's custom build capabilities. - -.. note:: If you see the error message: `PytorchStreamReader failed locating file bytecode.pkl: file not found ()`, likely you are using a torch script model that requires the use of the PyTorch JIT interpreter (a version of our PyTorch interpreter that is not as size-efficient). In order to leverage our efficient interpreter, please regenerate the model by running: `module._save_for_lite_interpreter(${model_path})`. - - - If `bytecode.pkl` is missing, likely the model is generated with the api: `module.save(${model_psth})`. - - The api `_load_for_lite_interpreter(${model_psth}) can be helpful to validate model with the efficient mobile interpreter. - -Android -------------------- -Get the Image Segmentation demo app in Android: https://github.com/pytorch/android-demo-app/tree/master/ImageSegmentation - -1. **Prepare model**: Prepare the mobile interpreter version of model by run the script below to generate the scripted model `deeplabv3_scripted.pt` and `deeplabv3_scripted.ptl` - -.. code:: python - - import torch - from torch.utils.mobile_optimizer import optimize_for_mobile - model = torch.hub.load('pytorch/vision:v0.7.0', 'deeplabv3_resnet50', pretrained=True) - model.eval() - - scripted_module = torch.jit.script(model) - # Export full jit version model (not compatible mobile interpreter), leave it here for comparison - scripted_module.save("deeplabv3_scripted.pt") - # Export mobile interpreter version model (compatible with mobile interpreter) - optimized_scripted_module = optimize_for_mobile(scripted_module) - optimized_scripted_module._save_for_lite_interpreter("deeplabv3_scripted.ptl") - -2. **Use the PyTorch Android library in the ImageSegmentation app**: Update the `dependencies` part of ``ImageSegmentation/app/build.gradle`` to - -.. code:: gradle - - repositories { - maven { - url "https://oss.sonatype.org/content/repositories/snapshots" - } - } - - dependencies { - implementation 'androidx.appcompat:appcompat:1.2.0' - implementation 'androidx.constraintlayout:constraintlayout:2.0.2' - testImplementation 'junit:junit:4.12' - androidTestImplementation 'androidx.test.ext:junit:1.1.2' - androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0' - implementation 'org.pytorch:pytorch_android_lite:1.9.0' - implementation 'org.pytorch:pytorch_android_torchvision:1.9.0' - - implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3' - } - - - -3. **Update model loader api**: Update ``ImageSegmentation/app/src/main/java/org/pytorch/imagesegmentation/MainActivity.java`` by - - 4.1 Add new import: `import org.pytorch.LiteModuleLoader` - - 4.2 Replace the way to load pytorch lite model - -.. code:: java - - // mModule = Module.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.pt")); - mModule = LiteModuleLoader.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.ptl")); - -4. **Test app**: Build and run the `ImageSegmentation` app in Android Studio - -iOS -------------------- -Get ImageSegmentation demo app in iOS: https://github.com/pytorch/ios-demo-app/tree/master/ImageSegmentation - -1. **Prepare model**: Same as Android. - -2. **Build the project with Cocoapods and prebuilt interpreter** Update the `PodFile` and run `pod install`: - -.. code-block:: podfile - - target 'ImageSegmentation' do - # Comment the next line if you don't want to use dynamic frameworks - use_frameworks! - - # Pods for ImageSegmentation - pod 'LibTorch_Lite', '~>1.9.0' - end - -3. **Update library and API** - - 3.1 Update ``TorchModule.mm``: To use the custom built libraries project, use `` (in ``TorchModule.mm``): - -.. code-block:: swift - - #import - // If it's built from source with xcode, comment out the line above - // and use following headers - // #include - // #include - // #include - -.. code-block:: swift - - @implementation TorchModule { - @protected - // torch::jit::script::Module _impl; - torch::jit::mobile::Module _impl; - } - - - (nullable instancetype)initWithFileAtPath:(NSString*)filePath { - self = [super init]; - if (self) { - try { - _impl = torch::jit::_load_for_mobile(filePath.UTF8String); - // _impl = torch::jit::load(filePath.UTF8String); - // _impl.eval(); - } catch (const std::exception& exception) { - NSLog(@"%s", exception.what()); - return nil; - } - } - return self; - } - -3.2 Update ``ViewController.swift`` - -.. code-block:: swift - - // if let filePath = Bundle.main.path(forResource: - // "deeplabv3_scripted", ofType: "pt"), - // let module = TorchModule(fileAtPath: filePath) { - // return module - // } else { - // fatalError("Can't find the model file!") - // } - if let filePath = Bundle.main.path(forResource: - "deeplabv3_scripted", ofType: "ptl"), - let module = TorchModule(fileAtPath: filePath) { - return module - } else { - fatalError("Can't find the model file!") - } - -4. Build and test the app in Xcode. - -How to use mobile interpreter + custom build ------------------------------------------- -A custom PyTorch interpreter library can be created to reduce binary size, by only containing the operators needed by the model. In order to do that follow these steps: - -1. To dump the operators in your model, say `deeplabv3_scripted`, run the following lines of Python code: - -.. code-block:: python - - # Dump list of operators used by deeplabv3_scripted: - import torch, yaml - model = torch.jit.load('deeplabv3_scripted.ptl') - ops = torch.jit.export_opnames(model) - with open('deeplabv3_scripted.yaml', 'w') as output: - yaml.dump(ops, output) - -In the snippet above, you first need to load the ScriptModule. Then, use export_opnames to return a list of operator names of the ScriptModule and its submodules. Lastly, save the result in a yaml file. The yaml file can be generated for any PyTorch 1.4.0 or above version. You can do that by checking the value of `torch.__version__`. - -2. To run the build script locally with the prepared yaml list of operators, pass in the yaml file generate from the last step into the environment variable SELECTED_OP_LIST. Also in the arguments, specify BUILD_PYTORCH_MOBILE=1 as well as the platform/architechture type. - -**iOS**: Take the simulator build for example, the command should be: - -.. code-block:: bash - - SELECTED_OP_LIST=deeplabv3_scripted.yaml BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=SIMULATOR ./scripts/build_ios.sh - -**Android**: Take the x86 build for example, the command should be: - -.. code-block:: bash - - SELECTED_OP_LIST=deeplabv3_scripted.yaml ./scripts/build_pytorch_android.sh x86 - - - -Conclusion ----------- - -In this tutorial, we demonstrated how to use PyTorch's efficient mobile interpreter, in an Android and iOS app. - -We walked through an Image Segmentation example to show how to dump the model, build a custom torch library from source and use the new api to run model. - -Our efficient mobile interpreter is still under development, and we will continue improving its size in the future. Note, however, that the APIs are subject to change in future versions. - -Thanks for reading! As always, we welcome any feedback, so please create an issue `here ` - if you have any. - -Learn More ----------- - -- To learn more about PyTorch Mobile, please refer to `PyTorch Mobile Home Page `_ -- To learn more about Image Segmentation, please refer to the `Image Segmentation DeepLabV3 on Android Recipe `_