Skip to content

Commit da835dd

Browse files
authored
Merge branch 'master' into cifartut_improve
2 parents 5bbf9d8 + f1fd16f commit da835dd

27 files changed

+163
-150
lines changed

.circleci/scripts/build_for_windows.sh

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,7 @@ if [[ "${CIRCLE_JOB}" == *worker_* ]]; then
4949
python $DIR/remove_runnable_code.py advanced_source/static_quantization_tutorial.py advanced_source/static_quantization_tutorial.py || true
5050
python $DIR/remove_runnable_code.py beginner_source/hyperparameter_tuning_tutorial.py beginner_source/hyperparameter_tuning_tutorial.py || true
5151
python $DIR/remove_runnable_code.py beginner_source/audio_preprocessing_tutorial.py beginner_source/audio_preprocessing_tutorial.py || true
52+
python $DIR/remove_runnable_code.py beginner_source/dcgan_faces_tutorial.py beginner_source/dcgan_faces_tutorial.py || true
5253
python $DIR/remove_runnable_code.py intermediate_source/tensorboard_profiler_tutorial.py intermediate_source/tensorboard_profiler_tutorial.py || true
5354
# Temp remove for mnist download issue. (Re-enabled for 1.8.1)
5455
# python $DIR/remove_runnable_code.py beginner_source/fgsm_tutorial.py beginner_source/fgsm_tutorial.py || true

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,10 @@ In case you prefer to write your tutorial in jupyter, you can use [this script](
2828
- Then you can build using `make docs`. This will download the data, execute the tutorials and build the documentation to `docs/` directory. This will take about 60-120 min for systems with GPUs. If you do not have a GPU installed on your system, then see next step.
2929
- You can skip the computationally intensive graph generation by running `make html-noplot` to build basic html documentation to `_build/html`. This way, you can quickly preview your tutorial.
3030

31-
> If you get **ModuleNotFoundError: No module named 'pytorch_sphinx_theme' make: *** [html-noplot] Error 2**, from /tutorials/src/pytorch-sphinx-theme run `python setup.py install`.
31+
> If you get **ModuleNotFoundError: No module named 'pytorch_sphinx_theme' make: *** [html-noplot] Error 2** from /tutorials/src/pytorch-sphinx-theme or /venv/src/pytorch-sphinx-theme (while using virtualenv), run `python setup.py install`.
3232
3333

3434
## About contributing to PyTorch Documentation and Tutorials
3535
* You can find information about contributing to PyTorch documentation in the
3636
PyTorch Repo [README.md](https://github.com/pytorch/pytorch/blob/master/README.md) file.
37-
* Additional information can be found in [PyTorch CONTRIBUTING.md](https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md).
37+
* Additional information can be found in [PyTorch CONTRIBUTING.md](https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md).
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

_templates/layout.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@
7575
</noscript>
7676

7777
<script type="text/javascript">
78-
var collapsedSections = ['PyTorch Recipes', 'Image and Video', 'Audio', 'Text', 'Reinforcement Learning', 'Deploying PyTorch Models in Production', 'Code Transforms with FX', 'Frontend APIs', 'Extending PyTorch', 'Model Optimization', 'Parallel and Distributed Training', 'Mobile'];
78+
var collapsedSections = ['PyTorch Recipes', 'Learning PyTorch', 'Image and Video', 'Audio', 'Text', 'Reinforcement Learning', 'Deploying PyTorch Models in Production', 'Code Transforms with FX', 'Frontend APIs', 'Extending PyTorch', 'Model Optimization', 'Parallel and Distributed Training', 'Mobile'];
7979
</script>
8080

8181
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&amp;guid=ON&amp;script=0"/>

beginner_source/basics/autogradqs_tutorial.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@
4747
#
4848
# In this network, ``w`` and ``b`` are **parameters**, which we need to
4949
# optimize. Thus, we need to be able to compute the gradients of loss
50-
# function with respect to those variables. In orded to do that, we set
50+
# function with respect to those variables. In order to do that, we set
5151
# the ``requires_grad`` property of those tensors.
5252

5353
#######################################################################
@@ -58,7 +58,7 @@
5858
# A function that we apply to tensors to construct computational graph is
5959
# in fact an object of class ``Function``. This object knows how to
6060
# compute the function in the *forward* direction, and also how to compute
61-
# it's derivative during the *backward propagation* step. A reference to
61+
# its derivative during the *backward propagation* step. A reference to
6262
# the backward propagation function is stored in ``grad_fn`` property of a
6363
# tensor. You can find more information of ``Function`` `in the
6464
# documentation <https://pytorch.org/docs/stable/autograd.html#function>`__.

beginner_source/basics/buildmodel_tutorial.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ def forward(self, x):
6767

6868
##############################################
6969
# We create an instance of ``NeuralNetwork``, and move it to the ``device``, and print
70-
# it's structure.
70+
# its structure.
7171

7272
model = NeuralNetwork().to(device)
7373
print(model)
@@ -119,7 +119,7 @@ def forward(self, x):
119119
# nn.Linear
120120
# ^^^^^^^^^^^^^^^^^^^^^^
121121
# The `linear layer <https://pytorch.org/docs/stable/generated/torch.nn.Linear.html>`_
122-
# is a module that applies a linear transformation on the input using it's stored weights and biases.
122+
# is a module that applies a linear transformation on the input using its stored weights and biases.
123123
#
124124
layer1 = nn.Linear(in_features=28*28, out_features=20)
125125
hidden1 = layer1(flat_image)

0 commit comments

Comments
 (0)