|
| 1 | +""" |
| 2 | +Saving and loading multiple models in one file using PyTorch |
| 3 | +============================================================ |
| 4 | +Saving and loading multiple models can be helpful for reusing models |
| 5 | +that you have previously trained. |
| 6 | +
|
| 7 | +Introduction |
| 8 | +------------ |
| 9 | +When saving a model comprised of multiple ``torch.nn.Modules``, such as |
| 10 | +a GAN, a sequence-to-sequence model, or an ensemble of models, you must |
| 11 | +save a dictionary of each model’s state_dict and corresponding |
| 12 | +optimizer. You can also save any other items that may aid you in |
| 13 | +resuming training by simply appending them to the dictionary. |
| 14 | +To load the models, first initialize the models and optimizers, then |
| 15 | +load the dictionary locally using ``torch.load()``. From here, you can |
| 16 | +easily access the saved items by simply querying the dictionary as you |
| 17 | +would expect. |
| 18 | +In this recipe, we will demonstrate how to save multiple models to one |
| 19 | +file using PyTorch. |
| 20 | +
|
| 21 | +Setup |
| 22 | +----- |
| 23 | +Before we begin, we need to install ``torch`` if it isn’t already |
| 24 | +available. |
| 25 | +
|
| 26 | +:: |
| 27 | +
|
| 28 | + pip install torch |
| 29 | + |
| 30 | +""" |
| 31 | + |
| 32 | + |
| 33 | + |
| 34 | +###################################################################### |
| 35 | +# Steps |
| 36 | +# ----- |
| 37 | +# |
| 38 | +# 1. Import all necessary libraries for loading our data |
| 39 | +# 2. Define and intialize the neural network |
| 40 | +# 3. Initialize the optimizer |
| 41 | +# 4. Save multiple models |
| 42 | +# 5. Load multiple models |
| 43 | +# |
| 44 | +# 1. Import necessary libraries for loading our data |
| 45 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 46 | +# |
| 47 | +# For this recipe, we will use ``torch`` and its subsidiaries ``torch.nn`` |
| 48 | +# and ``torch.optim``. |
| 49 | +# |
| 50 | + |
| 51 | +import torch |
| 52 | +import torch.nn as nn |
| 53 | +import torch.optim as optim |
| 54 | + |
| 55 | + |
| 56 | +###################################################################### |
| 57 | +# 2. Define and intialize the neural network |
| 58 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 59 | +# |
| 60 | +# For sake of example, we will create a neural network for training |
| 61 | +# images. To learn more see the Defining a Neural Network recipe. Build |
| 62 | +# two variables for the models to eventually save. |
| 63 | +# |
| 64 | + |
| 65 | +class Net(nn.Module): |
| 66 | + def __init__(self): |
| 67 | + super(Net, self).__init__() |
| 68 | + self.conv1 = nn.Conv2d(3, 6, 5) |
| 69 | + self.pool = nn.MaxPool2d(2, 2) |
| 70 | + self.conv2 = nn.Conv2d(6, 16, 5) |
| 71 | + self.fc1 = nn.Linear(16 * 5 * 5, 120) |
| 72 | + self.fc2 = nn.Linear(120, 84) |
| 73 | + self.fc3 = nn.Linear(84, 10) |
| 74 | + |
| 75 | + def forward(self, x): |
| 76 | + x = self.pool(F.relu(self.conv1(x))) |
| 77 | + x = self.pool(F.relu(self.conv2(x))) |
| 78 | + x = x.view(-1, 16 * 5 * 5) |
| 79 | + x = F.relu(self.fc1(x)) |
| 80 | + x = F.relu(self.fc2(x)) |
| 81 | + x = self.fc3(x) |
| 82 | + return x |
| 83 | + |
| 84 | +netA = Net() |
| 85 | +netB = Net() |
| 86 | + |
| 87 | + |
| 88 | +###################################################################### |
| 89 | +# 3. Initialize the optimizer |
| 90 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 91 | +# |
| 92 | +# We will use SGD with momentum to build an optimizer for each model we |
| 93 | +# created. |
| 94 | +# |
| 95 | + |
| 96 | +optimizerA = optim.SGD(netA.parameters(), lr=0.001, momentum=0.9) |
| 97 | +optimizerB = optim.SGD(netB.parameters(), lr=0.001, momentum=0.9) |
| 98 | + |
| 99 | + |
| 100 | +###################################################################### |
| 101 | +# 4. Save multiple models |
| 102 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 103 | +# |
| 104 | +# Collect all relevant information and build your dictionary. |
| 105 | +# |
| 106 | + |
| 107 | +# Specify a path to save to |
| 108 | +PATH = "model.pt" |
| 109 | + |
| 110 | +torch.save({ |
| 111 | + 'modelA_state_dict': netA.state_dict(), |
| 112 | + 'modelB_state_dict': netB.state_dict(), |
| 113 | + 'optimizerA_state_dict': optimizerA.state_dict(), |
| 114 | + 'optimizerB_state_dict': optimizerB.state_dict(), |
| 115 | + }, PATH) |
| 116 | + |
| 117 | + |
| 118 | +###################################################################### |
| 119 | +# 4. Load multiple models |
| 120 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 121 | +# |
| 122 | +# Remember to first initialize the models and optimizers, then load the |
| 123 | +# dictionary locally. |
| 124 | +# |
| 125 | + |
| 126 | +modelA = Net() |
| 127 | +modelB = Net() |
| 128 | +optimModelA = optim.SGD(modelA.parameters(), lr=0.001, momentum=0.9) |
| 129 | +optimModelB = optim.SGD(modelB.parameters(), lr=0.001, momentum=0.9) |
| 130 | + |
| 131 | +checkpoint = torch.load(PATH) |
| 132 | +modelA.load_state_dict(checkpoint['modelA_state_dict']) |
| 133 | +modelB.load_state_dict(checkpoint['modelB_state_dict']) |
| 134 | +optimizerA.load_state_dict(checkpoint['optimizerA_state_dict']) |
| 135 | +optimizerB.load_state_dict(checkpoint['optimizerB_state_dict']) |
| 136 | + |
| 137 | +modelA.eval() |
| 138 | +modelB.eval() |
| 139 | +# - or - |
| 140 | +modelA.train() |
| 141 | +modelB.train() |
| 142 | + |
| 143 | + |
| 144 | +###################################################################### |
| 145 | +# You must call ``model.eval()`` to set dropout and batch normalization |
| 146 | +# layers to evaluation mode before running inference. Failing to do this |
| 147 | +# will yield inconsistent inference results. |
| 148 | +# |
| 149 | +# If you wish to resuming training, call ``model.train()`` to ensure these |
| 150 | +# layers are in training mode. |
| 151 | +# |
| 152 | +# Congratulations! You have successfully saved and loaded multiple models |
| 153 | +# in PyTorch. |
| 154 | +# |
| 155 | +# Learn More |
| 156 | +# ---------- |
| 157 | +# |
| 158 | +# Take a look at these other recipes to continue your learning: |
| 159 | +# |
| 160 | +# - TBD |
| 161 | +# - TBD |
| 162 | +# |
0 commit comments