|
2 | 2 | """ |
3 | 3 | What is `torch.nn` *really*? |
4 | 4 | ============================ |
5 | | -by Jeremy Howard, `fast.ai <https://fast.ai>`_. Thanks to Rachel Thomas and Francisco Ingham. |
| 5 | +by Jeremy Howard, `fast.ai <https://www.fast.ai>`_. Thanks to Rachel Thomas and Francisco Ingham. |
6 | 6 | """ |
7 | 7 | ############################################################################### |
8 | 8 | # We recommend running this tutorial as a notebook, not a script. To download the notebook (.ipynb) file, |
|
29 | 29 | # MNIST data setup |
30 | 30 | # ---------------- |
31 | 31 | # |
32 | | -# We will use the classic `MNIST <https://deeplearning.net/data/mnist/>`_ dataset, |
| 32 | +# We will use the classic `MNIST <http://deeplearning.net/data/mnist/>`_ dataset, |
33 | 33 | # which consists of black-and-white images of hand-drawn digits (between 0 and 9). |
34 | 34 | # |
35 | 35 | # We will use `pathlib <https://docs.python.org/3/library/pathlib.html>`_ |
36 | 36 | # for dealing with paths (part of the Python 3 standard library), and will |
37 | 37 | # download the dataset using |
38 | | -# `requests <https://docs.python-requests.org/en/master/>`_. We will only |
| 38 | +# `requests <http://docs.python-requests.org/en/master/>`_. We will only |
39 | 39 | # import modules when we use them, so you can see exactly what's being |
40 | 40 | # used at each point. |
41 | 41 |
|
|
47 | 47 |
|
48 | 48 | PATH.mkdir(parents=True, exist_ok=True) |
49 | 49 |
|
50 | | -URL = "https://deeplearning.net/data/mnist/" |
| 50 | +URL = "http://deeplearning.net/data/mnist/" |
51 | 51 | FILENAME = "mnist.pkl.gz" |
52 | 52 |
|
53 | 53 | if not (PATH / FILENAME).exists(): |
|
109 | 109 | # PyTorch signifies that the operation is performed in-place.) |
110 | 110 | # |
111 | 111 | # .. note:: We are initializing the weights here with |
112 | | -# `Xavier initialisation <https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_ |
| 112 | +# `Xavier initialisation <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_ |
113 | 113 | # (by multiplying with 1/sqrt(n)). |
114 | 114 |
|
115 | 115 | import math |
|
0 commit comments