|
35 | 35 | # are quantized dynamically (per batch) to int8 when the weights are |
36 | 36 | # quantized to int8. |
37 | 37 | # |
38 | | -# In PyTorch, we have ``torch.quantization.quantize_dynamic`` API support |
39 | | -# (https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic), |
40 | | -# which replaces specified modules with dynamic weight-only quantized |
| 38 | +# In PyTorch, we have `torch.quantization.quantize_dynamic API |
| 39 | +# <https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic>`_ |
| 40 | +# ,which replaces specified modules with dynamic weight-only quantized |
41 | 41 | # versions and output the quantized model. |
42 | 42 | # |
43 | 43 | # - We demonstrate the accuracy and inference performance results on the |
44 | | -# Microsoft Research Paraphrase Corpus (MRPC) task |
45 | | -# (https://www.microsoft.com/en-us/download/details.aspx?id=52398) in |
46 | | -# the General Language Understanding Evaluation benchmark (GLUE) |
47 | | -# (https://gluebenchmark.com/). The MRPC (Dolan and Brockett, 2005) is |
| 44 | +# `Microsoft Research Paraphrase Corpus (MRPC) task <https://www.microsoft.com/en-us/download/details.aspx?id=52398>`_ |
| 45 | +# in the General Language Understanding Evaluation benchmark `(GLUE) |
| 46 | +# <https://gluebenchmark.com/>`_. The MRPC (Dolan and Brockett, 2005) is |
48 | 47 | # a corpus of sentence pairs automatically extracted from online news |
49 | 48 | # sources, with human annotations of whether the sentences in the pair |
50 | 49 | # are semantically equivalent. Because the classes are imbalanced (68% |
51 | 50 | # positive, 32% negative), we follow common practice and report both |
52 | | -# accuracy and F1 score |
53 | | -# (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html). |
| 51 | +# accuracy and `F1 score <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>`_ |
54 | 52 | # MRPC is a common NLP task for language pair classification, as shown |
55 | 53 | # below. |
56 | 54 | # |
|
78 | 76 | # |
79 | 77 | # To start this tutorial, let’s first follow the installation instructions |
80 | 78 | # in PyTorch and HuggingFace Github Repo: - |
81 | | -# https://github.com/pytorch/pytorch/#installation - |
82 | | -# https://github.com/huggingface/transformers#installation |
| 79 | +# |
| 80 | +# * https://github.com/pytorch/pytorch/#installation - |
| 81 | +# |
| 82 | +# * https://github.com/huggingface/transformers#installation |
83 | 83 | # |
84 | 84 | # In addition, we also install ``sklearn`` package, as we will reuse its |
85 | 85 | # built-in F1 score calculation helper function. |
|
93 | 93 | ###################################################################### |
94 | 94 | # Because we will be using the experimental parts of the PyTorch, it is |
95 | 95 | # recommended to install the latest version of torch and torchvision. You |
96 | | -# can find the most recent instructions on local installation here |
97 | | -# https://pytorch.org/get-started/locally/. For example, to install on |
| 96 | +# can find the most recent instructions on local installation `here |
| 97 | +# <https://pytorch.org/get-started/locally/>`_. For example, to install on |
98 | 98 | # Mac: |
99 | 99 | # |
100 | 100 | # .. code:: shell |
|
149 | 149 | # Download the dataset |
150 | 150 | # -------------------- |
151 | 151 | # |
152 | | -# Before running MRPC tasks we download the GLUE data |
153 | | -# (https://gluebenchmark.com/tasks) by running this script |
154 | | -# (https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e, |
155 | | -# https://github.com/nyu-mll/GLUE-baselines/blob/master/download_glue_data.py) |
| 152 | +# Before running MRPC tasks we download the `GLUE data |
| 153 | +# <https://gluebenchmark.com/tasks>`_ by running this `script |
| 154 | +# <https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e>`_ followed by |
| 155 | +# `download_glue_data <https://github.com/nyu-mll/GLUE-baselines/blob/master/download_glue_data.py>`_. |
156 | 156 | # and unpack it to some directory “glue_data/MRPC”. |
157 | 157 | # |
158 | 158 |
|
|
176 | 176 | # Convert the texts into features |
177 | 177 | # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
178 | 178 | # |
179 | | -# glue_convert_examples_to_features ( |
180 | | -# https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py) |
| 179 | +# `glue_convert_examples_to_features <https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py>`_. |
181 | 180 | # load a data file into a list of ``InputFeatures``. |
182 | 181 | # |
183 | 182 | # - Tokenize the input sequences; |
|
190 | 189 | # F1 metric |
191 | 190 | # ~~~~~~~~~ |
192 | 191 | # |
193 | | -# The F1 score |
194 | | -# (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html) |
| 192 | +# The `F1 score <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>`_ |
195 | 193 | # can be interpreted as a weighted average of the precision and recall, |
196 | 194 | # where an F1 score reaches its best value at 1 and worst score at 0. The |
197 | 195 | # relative contribution of precision and recall to the F1 score are equal. |
|
217 | 215 | # |
218 | 216 | # To fine-tune the pre-trained BERT model (“bert-base-uncased” model in |
219 | 217 | # HuggingFace transformers) for the MRPC task, you can follow the command |
220 | | -# in (https://github.com/huggingface/transformers/tree/master/examples): |
| 218 | +# in `examples<https://github.com/huggingface/transformers/tree/master/examples>`_" |
221 | 219 | # |
222 | 220 | # :: |
223 | 221 | # |
@@ -333,10 +331,8 @@ def set_seed(seed): |
333 | 331 | # Define the tokenize and evaluation function |
334 | 332 | # ------------------------------------------- |
335 | 333 | # |
336 | | -# We reuse the tokenize and evaluation function from |
337 | | -# https://github.com/huggingface/transformers/blob/master/examples/run_glue.py. |
| 334 | +# We reuse the tokenize and evaluation function from `huggingface <https://github.com/huggingface/transformers/blob/master/examples/run_glue.py>`_. |
338 | 335 | # |
339 | | - |
340 | 336 | # coding=utf-8 |
341 | 337 | # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. |
342 | 338 | # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. |
@@ -598,8 +594,8 @@ def time_model_evaluation(model, configs, tokenizer): |
598 | 594 | # set multi-thread by ``torch.set_num_threads(N)`` (``N`` is the number of |
599 | 595 | # intra-op parallelization threads). One preliminary requirement to enable |
600 | 596 | # the intra-op parallelization support is to build PyTorch with the right |
601 | | -# backend such as OpenMP, Native, or TBB |
602 | | -# (https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html#build-options). |
| 597 | +# `backend <https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html#build-options>`_ |
| 598 | +# such as OpenMP, Native or TBB. |
603 | 599 | # You can use ``torch.__config__.parallel_info()`` to check the |
604 | 600 | # parallelization settings. On the same MacBook Pro using PyTorch with |
605 | 601 | # Native backend for parallelization, we can get about 46 seconds for |
|
0 commit comments