Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 29 additions & 43 deletions torchtext/models/roberta/bundler.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,16 +160,35 @@ def encoderConf(self) -> RobertaEncoderConf:
return self._encoder_conf


XLMR_BASE_ENCODER = RobertaBundle(
_path=urljoin(_TEXT_BUCKET, "xlmr.base.encoder.pt"),
_encoder_conf=RobertaEncoderConf(vocab_size=250002),
transform=lambda: T.Sequential(
def xlmr_transform(truncate_length: int) -> Module:
"""Standard transform for XLMR models."""
return T.Sequential(
T.SentencePieceTokenizer(urljoin(_TEXT_BUCKET, "xlmr.sentencepiece.bpe.model")),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "xlmr.vocab.pt"))),
T.Truncate(254),
T.Truncate(truncate_length),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
),
)


def roberta_transform(truncate_length: int) -> Module:
"""Standard transform for RoBERTa models."""
return T.Sequential(
T.GPT2BPETokenizer(
encoder_json_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_encoder.json"),
vocab_bpe_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_vocab.bpe"),
),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "roberta.vocab.pt"))),
T.Truncate(truncate_length),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
)


XLMR_BASE_ENCODER = RobertaBundle(
_path=urljoin(_TEXT_BUCKET, "xlmr.base.encoder.pt"),
_encoder_conf=RobertaEncoderConf(vocab_size=250002),
transform=lambda: xlmr_transform(254),
)

XLMR_BASE_ENCODER.__doc__ = """
Expand All @@ -193,13 +212,7 @@ def encoderConf(self) -> RobertaEncoderConf:
_encoder_conf=RobertaEncoderConf(
vocab_size=250002, embedding_dim=1024, ffn_dimension=4096, num_attention_heads=16, num_encoder_layers=24
),
transform=lambda: T.Sequential(
T.SentencePieceTokenizer(urljoin(_TEXT_BUCKET, "xlmr.sentencepiece.bpe.model")),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "xlmr.vocab.pt"))),
T.Truncate(510),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
),
transform=lambda: xlmr_transform(510),
)

XLMR_LARGE_ENCODER.__doc__ = """
Expand All @@ -221,16 +234,7 @@ def encoderConf(self) -> RobertaEncoderConf:
ROBERTA_BASE_ENCODER = RobertaBundle(
_path=urljoin(_TEXT_BUCKET, "roberta.base.encoder.pt"),
_encoder_conf=RobertaEncoderConf(vocab_size=50265),
transform=lambda: T.Sequential(
T.GPT2BPETokenizer(
encoder_json_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_encoder.json"),
vocab_bpe_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_vocab.bpe"),
),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "roberta.vocab.pt"))),
T.Truncate(254),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
),
transform=lambda: roberta_transform(254),
)

ROBERTA_BASE_ENCODER.__doc__ = """
Expand Down Expand Up @@ -263,16 +267,7 @@ def encoderConf(self) -> RobertaEncoderConf:
num_attention_heads=16,
num_encoder_layers=24,
),
transform=lambda: T.Sequential(
T.GPT2BPETokenizer(
encoder_json_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_encoder.json"),
vocab_bpe_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_vocab.bpe"),
),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "roberta.vocab.pt"))),
T.Truncate(510),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
),
transform=lambda: roberta_transform(510),
)

ROBERTA_LARGE_ENCODER.__doc__ = """
Expand Down Expand Up @@ -302,16 +297,7 @@ def encoderConf(self) -> RobertaEncoderConf:
num_encoder_layers=6,
padding_idx=1,
),
transform=lambda: T.Sequential(
T.GPT2BPETokenizer(
encoder_json_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_encoder.json"),
vocab_bpe_path=urljoin(_TEXT_BUCKET, "gpt2_bpe_vocab.bpe"),
),
T.VocabTransform(load_state_dict_from_url(urljoin(_TEXT_BUCKET, "roberta.vocab.pt"))),
T.Truncate(510),
T.AddToken(token=0, begin=True),
T.AddToken(token=2, begin=False),
),
transform=lambda: roberta_transform(510),
)

ROBERTA_DISTILLED_ENCODER.__doc__ = """
Expand Down