Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 0 additions & 83 deletions test/datasets/test_amazonreviewfull.py

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -5,18 +5,20 @@
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets.amazonreviewfull import AmazonReviewFull
from torchtext.datasets.amazonreviewpolarity import AmazonReviewPolarity

from ..common.case_utils import TempDirMixin, zip_equal
from ..common.parameterized_utils import nested_params
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
def _get_mock_dataset(root_dir, base_dir_name):
"""
root_dir: directory to the mocked dataset
base_dir_name: AmazonReviewFull or AmazonReviewPolarity
"""
base_dir = os.path.join(root_dir, "AmazonReviewPolarity")
base_dir = os.path.join(root_dir, base_dir_name)
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)

Expand All @@ -26,7 +28,10 @@ def _get_mock_dataset(root_dir):
txt_file = os.path.join(temp_dataset_dir, file_name)
with open(txt_file, "w") as f:
for i in range(5):
label = seed % 2 + 1
if base_dir_name == AmazonReviewFull.__name__:
label = seed % 5 + 1
else:
label = seed % 2 + 1
rand_string = " ".join(
random.choice(string.ascii_letters) for i in range(seed)
)
Expand All @@ -36,25 +41,27 @@ def _get_mock_dataset(root_dir):
f.write(f'"{label}","{rand_string}","{rand_string}"\n')
seed += 1

compressed_dataset_path = os.path.join(
base_dir, "amazon_review_polarity_csv.tar.gz"
)
if base_dir_name == AmazonReviewFull.__name__:
archive_file_name = "amazon_review_full_csv"
else:
archive_file_name = "amazon_review_polarity_csv"

compressed_dataset_path = os.path.join(base_dir, f"{archive_file_name}.tar.gz")
# create tar file from dataset folder
with tarfile.open(compressed_dataset_path, "w:gz") as tar:
tar.add(temp_dataset_dir, arcname="amazon_review_polarity_csv")
tar.add(temp_dataset_dir, arcname=archive_file_name)

return mocked_data


class TestAmazonReviewPolarity(TempDirMixin, TorchtextTestCase):
class TestAmazonReviews(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []

@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
)
Expand All @@ -65,19 +72,24 @@ def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test"])
def test_amazon_review_polarity(self, split):
dataset = AmazonReviewPolarity(root=self.root_dir, split=split)

@nested_params([AmazonReviewFull, AmazonReviewPolarity], ["train", "test"])
def test_amazon_reviews(self, amazon_review_dataset, split):
expected_samples = _get_mock_dataset(
self.root_dir, amazon_review_dataset.__name__
)[split]
dataset = amazon_review_dataset(root=self.root_dir, split=split)
samples = list(dataset)
expected_samples = self.samples[split]

for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test"])
def test_amazon_review_polarity_split_argument(self, split):
dataset1 = AmazonReviewPolarity(root=self.root_dir, split=split)
(dataset2,) = AmazonReviewPolarity(root=self.root_dir, split=(split,))
@nested_params([AmazonReviewFull, AmazonReviewPolarity], ["train", "test"])
def test_amazon_reviews_split_argument(self, amazon_review_dataset, split):
# call `_get_mock_dataset` to create mock dataset files
_ = _get_mock_dataset(self.root_dir, amazon_review_dataset.__name__)

dataset1 = amazon_review_dataset(root=self.root_dir, split=split)
(dataset2,) = amazon_review_dataset(root=self.root_dir, split=(split,))

for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
6 changes: 3 additions & 3 deletions test/datasets/test_squad.py → test/datasets/test_squads.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def _get_mock_dataset(root_dir, base_dir_name):
return mocked_data


class TestSQuAD(TempDirMixin, TorchtextTestCase):
class TestSQuADs(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []

Expand All @@ -92,7 +92,7 @@ def tearDownClass(cls):
super().tearDownClass()

@nested_params([SQuAD1, SQuAD2], ["train", "dev"])
def test_squad(self, squad_dataset, split):
def test_squads(self, squad_dataset, split):
expected_samples = _get_mock_dataset(self.root_dir, squad_dataset.__name__)[
split
]
Expand All @@ -103,7 +103,7 @@ def test_squad(self, squad_dataset, split):
self.assertEqual(sample, expected_sample)

@nested_params([SQuAD1, SQuAD2], ["train", "dev"])
def test_squad_split_argument(self, squad_dataset, split):
def test_squads_split_argument(self, squad_dataset, split):
# call `_get_mock_dataset` to create mock dataset files
_ = _get_mock_dataset(self.root_dir, squad_dataset.__name__)

Expand Down
83 changes: 0 additions & 83 deletions test/datasets/test_yelpreviewfull.py

This file was deleted.