Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions test/datasets/test_imdb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import os
import random
import string
import tarfile
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets.imdb import IMDB

from ..common.case_utils import TempDirMixin, zip_equal
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "IMDB")
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)

seed = 1
mocked_data = defaultdict(list)
for split in ("train", "test"):
neg_dir = os.path.join(temp_dataset_dir, split, "neg")
pos_dir = os.path.join(temp_dataset_dir, split, "pos")
os.makedirs(neg_dir, exist_ok=True)
os.makedirs(pos_dir, exist_ok=True)

for i in range(5):
# all negative labels are read first before positive labels in the
# IMDB dataset implementation
label = "neg" if i < 2 else "pos"
cur_dir = pos_dir if label == "pos" else neg_dir
txt_file = os.path.join(cur_dir, f"{i}{i}_{i}.txt")
with open(txt_file, "w") as f:
rand_string = " ".join(
random.choice(string.ascii_letters) for i in range(seed)
)
dataset_line = (label, rand_string)
# append line to correct dataset split
mocked_data[split].append(dataset_line)
f.write(rand_string)
seed += 1

compressed_dataset_path = os.path.join(base_dir, "aclImdb_v1.tar.gz")
# create tar file from dataset folder
with tarfile.open(compressed_dataset_path, "w:gz") as tar:
tar.add(temp_dataset_dir, arcname="aclImdb_v1")

return mocked_data


class TestIMDB(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []

@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
)
cls.patcher.start()

@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test"])
def test_imdb(self, split):
dataset = IMDB(root=self.root_dir, split=split)

samples = list(dataset)
expected_samples = self.samples[split]
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test"])
def test_imdb_split_argument(self, split):
dataset1 = IMDB(root=self.root_dir, split=split)
(dataset2,) = IMDB(root=self.root_dir, split=(split,))

for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)