diff --git a/test/datasets/test_squad1.py b/test/datasets/test_squad1.py new file mode 100644 index 0000000000..75f1f61639 --- /dev/null +++ b/test/datasets/test_squad1.py @@ -0,0 +1,104 @@ +import json +import os +import random +import string +import uuid +from collections import defaultdict +from random import randint +from unittest.mock import patch + +from parameterized import parameterized +from torchtext.data.datasets_utils import _ParseSQuADQAData +from torchtext.datasets.squad1 import SQuAD1 + +from ..common.case_utils import TempDirMixin, zip_equal +from ..common.torchtext_test_case import TorchtextTestCase + + +def _get_mock_json_data(): + rand_string = " ".join(random.choice(string.ascii_letters) for i in range(10)) + mock_json_data = { + "data": [ + { + "title": rand_string, + "paragraphs": [ + { + "context": rand_string, + "qas": [ + { + "answers": [ + { + "answer_start": randint(1, 1000), + "text": rand_string, + } + ], + "question": rand_string, + "id": uuid.uuid1().hex, + }, + ], + } + ], + } + ] + } + return mock_json_data + + +def _get_mock_dataset(root_dir): + """ + root_dir: directory to the mocked dataset + """ + base_dir = os.path.join(root_dir, "SQuAD1") + os.makedirs(base_dir, exist_ok=True) + + mocked_data = defaultdict(list) + for file_name in ("train-v1.1.json", "dev-v1.1.json"): + txt_file = os.path.join(base_dir, file_name) + with open(txt_file, "w") as f: + mock_json_data = _get_mock_json_data() + f.write(json.dumps(mock_json_data)) + + split = "train" if "train" in file_name else "dev" + dataset_line = next( + iter(_ParseSQuADQAData([("file_handle", mock_json_data)])) + ) + mocked_data[split].append(dataset_line) + + return mocked_data + + +class TestSQuAD1(TempDirMixin, TorchtextTestCase): + root_dir = None + samples = [] + + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + cls.samples = _get_mock_dataset(cls.root_dir) + cls.patcher = patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ) + cls.patcher.start() + + @classmethod + def tearDownClass(cls): + cls.patcher.stop() + super().tearDownClass() + + @parameterized.expand(["train", "dev"]) + def test_squad1(self, split): + dataset = SQuAD1(root=self.root_dir, split=split) + + samples = list(dataset) + expected_samples = self.samples[split] + for sample, expected_sample in zip_equal(samples, expected_samples): + self.assertEqual(sample, expected_sample) + + @parameterized.expand(["train", "dev"]) + def test_squad1_split_argument(self, split): + dataset1 = SQuAD1(root=self.root_dir, split=split) + (dataset2,) = SQuAD1(root=self.root_dir, split=(split,)) + + for d1, d2 in zip_equal(dataset1, dataset2): + self.assertEqual(d1, d2)