diff --git a/test/datasets/test_yelpreviews.py b/test/datasets/test_yelpreviews.py new file mode 100644 index 0000000000..241b52b7fa --- /dev/null +++ b/test/datasets/test_yelpreviews.py @@ -0,0 +1,95 @@ +import os +import random +import string +import tarfile +from collections import defaultdict +from unittest.mock import patch + +from ..common.parameterized_utils import nested_params +from torchtext.datasets.yelpreviewpolarity import YelpReviewPolarity +from torchtext.datasets.yelpreviewfull import YelpReviewFull + +from ..common.case_utils import TempDirMixin, zip_equal +from ..common.torchtext_test_case import TorchtextTestCase + + +def _get_mock_dataset(root_dir, base_dir_name): + """ + root_dir: directory to the mocked dataset + base_dir_name: YelpReviewPolarity or YelpReviewFull + """ + base_dir = os.path.join(root_dir, base_dir_name) + temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir") + os.makedirs(temp_dataset_dir, exist_ok=True) + + seed = 1 + mocked_data = defaultdict(list) + for file_name in ("train.csv", "test.csv"): + csv_file = os.path.join(temp_dataset_dir, file_name) + mocked_lines = mocked_data[os.path.splitext(file_name)[0]] + with open(csv_file, "w") as f: + for i in range(5): + if base_dir_name == YelpReviewPolarity.__name__: + label = seed % 2 + 1 + else: + label = seed % 5 + 1 + rand_string = " ".join( + random.choice(string.ascii_letters) for i in range(seed) + ) + dataset_line = (label, f"{rand_string}") + f.write(f'"{label}","{rand_string}"\n') + + # append line to correct dataset split + mocked_lines.append(dataset_line) + seed += 1 + + if base_dir_name == YelpReviewPolarity.__name__: + compressed_file = "yelp_review_polarity_csv" + else: + compressed_file = "yelp_review_full_csv" + + compressed_dataset_path = os.path.join(base_dir, compressed_file + ".tar.gz") + # create gz file from dataset folder + with tarfile.open(compressed_dataset_path, "w:gz") as tar: + tar.add(temp_dataset_dir, arcname=compressed_file) + + return mocked_data + + +class TestYelpReviews(TempDirMixin, TorchtextTestCase): + root_dir = None + samples = [] + + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + cls.patcher = patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ) + cls.patcher.start() + + @classmethod + def tearDownClass(cls): + cls.patcher.stop() + super().tearDownClass() + + @nested_params([YelpReviewPolarity, YelpReviewFull], ["train", "test"]) + def test_yelpreviews(self, yelp_dataset, split): + expected_samples = _get_mock_dataset(self.root_dir, base_dir_name=yelp_dataset.__name__)[split] + + dataset = yelp_dataset(root=self.root_dir, split=split) + samples = list(dataset) + for sample, expected_sample in zip_equal(samples, expected_samples): + self.assertEqual(sample, expected_sample) + + @nested_params([YelpReviewPolarity, YelpReviewFull], ["train", "test"]) + def test_yelpreviews_split_argument(self, yelp_dataset, split): + # call `_get_mock_dataset` to create mock dataset files + _ = _get_mock_dataset(self.root_dir, yelp_dataset.__name__) + + dataset1 = yelp_dataset(root=self.root_dir, split=split) + (dataset2,) = yelp_dataset(root=self.root_dir, split=(split,)) + + for d1, d2 in zip_equal(dataset1, dataset2): + self.assertEqual(d1, d2)