diff --git a/test/datasets/test_enwik9.py b/test/datasets/test_enwik9.py new file mode 100644 index 0000000000..1b79b201e6 --- /dev/null +++ b/test/datasets/test_enwik9.py @@ -0,0 +1,83 @@ +import os +import random +import string +import zipfile +from collections import defaultdict +from unittest.mock import patch + +from parameterized import parameterized +from torchtext.datasets.enwik9 import EnWik9 + +from ..common.case_utils import TempDirMixin, zip_equal +from ..common.torchtext_test_case import TorchtextTestCase + + +def _get_mock_dataset(root_dir): + """ + root_dir: directory to the mocked dataset + """ + base_dir = os.path.join(root_dir, "EnWik9") + temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir") + os.makedirs(temp_dataset_dir, exist_ok=True) + + seed = 1 + mocked_data = defaultdict(list) + file_name = "enwik9" + txt_file = os.path.join(temp_dataset_dir, file_name) + mocked_lines = mocked_data["train"] + with open(txt_file, "w") as f: + for i in range(5): + rand_string = "<" + " ".join( + random.choice(string.ascii_letters) for i in range(seed) + ) + ">" + dataset_line = (f"'{rand_string}'") + f.write(f"'{rand_string}'\n") + + # append line to correct dataset split + mocked_lines.append(dataset_line) + seed += 1 + + compressed_dataset_path = os.path.join(base_dir, "enwik9.zip") + # create zip file from dataset folder + with zipfile.ZipFile(compressed_dataset_path, "w") as zip_file: + txt_file = os.path.join(temp_dataset_dir, file_name) + zip_file.write(txt_file, arcname=file_name) + + return mocked_data + + +class TestEnWik9(TempDirMixin, TorchtextTestCase): + root_dir = None + samples = [] + + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + cls.samples = _get_mock_dataset(cls.root_dir) + cls.patcher = patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ) + cls.patcher.start() + + @classmethod + def tearDownClass(cls): + cls.patcher.stop() + super().tearDownClass() + + @parameterized.expand(["train"]) + def test_enwik9(self, split): + dataset = EnWik9(root=self.root_dir, split=split) + + samples = list(dataset) + expected_samples = self.samples[split] + for sample, expected_sample in zip_equal(samples, expected_samples): + self.assertEqual(sample, expected_sample) + + @parameterized.expand(["train"]) + def test_enwik9_split_argument(self, split): + dataset1 = EnWik9(root=self.root_dir, split=split) + (dataset2,) = EnWik9(root=self.root_dir, split=(split,)) + + for d1, d2 in zip_equal(dataset1, dataset2): + self.assertEqual(d1, d2)