diff --git a/test/datasets/test_multi30k.py b/test/datasets/test_multi30k.py new file mode 100644 index 0000000000..6527050c56 --- /dev/null +++ b/test/datasets/test_multi30k.py @@ -0,0 +1,82 @@ +import os +import random +import string +import tarfile +from collections import defaultdict +from unittest.mock import patch + +from ..common.parameterized_utils import nested_params +from torchtext.datasets import Multi30k + +from ..common.case_utils import TempDirMixin, zip_equal +from ..common.torchtext_test_case import TorchtextTestCase + + +def _get_mock_dataset(root_dir): + """ + root_dir: directory to the mocked dataset + """ + base_dir = os.path.join(root_dir, "Multi30k") + temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir") + os.makedirs(temp_dataset_dir, exist_ok=True) + + seed = 1 + mocked_data = defaultdict(list) + for file_name in ("train.de", "train.en", "val.de", "val.en", "test.de", "test.en"): + txt_file = os.path.join(temp_dataset_dir, file_name) + with open(txt_file, "w") as f: + for i in range(5): + rand_string = " ".join( + random.choice(string.ascii_letters) for i in range(seed) + ) + content = f"{rand_string}\n" + f.write(content) + mocked_data[file_name].append(content) + seed += 1 + + archive = {} + archive["train"] = os.path.join(base_dir, "training.tar.gz") + archive["val"] = os.path.join(base_dir, "validation.tar.gz") + archive["test"] = os.path.join(base_dir, "mmt16_task1_test.tar.gz") + + for split in ("train", "val", "test"): + with tarfile.open(archive[split], "w:gz") as tar: + tar.add(os.path.join(temp_dataset_dir, f"{split}.de")) + tar.add(os.path.join(temp_dataset_dir, f"{split}.en")) + + return mocked_data + + +class TestMulti30k(TempDirMixin, TorchtextTestCase): + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + cls.samples = _get_mock_dataset(cls.root_dir) + cls.patcher = patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ) + cls.patcher.start() + + @classmethod + def tearDownClass(cls): + cls.patcher.stop() + super().tearDownClass() + + @nested_params(["train", "valid", "test"], [("de", "en"), ("en", "de")]) + def test_multi30k(self, split, language_pair): + dataset = Multi30k(root=self.root_dir, split=split, language_pair=language_pair) + if split == "valid": + split = "val" + samples = list(dataset) + expected_samples = [(d1, d2) for d1, d2 in zip(self.samples[f'{split}.{language_pair[0]}'], self.samples[f'{split}.{language_pair[1]}'])] + for sample, expected_sample in zip_equal(samples, expected_samples): + self.assertEqual(sample, expected_sample) + + @nested_params(["train", "valid", "test"], [("de", "en"), ("en", "de")]) + def test_multi30k_split_argument(self, split, language_pair): + dataset1 = Multi30k(root=self.root_dir, split=split, language_pair=language_pair) + (dataset2,) = Multi30k(root=self.root_dir, split=(split,), language_pair=language_pair) + + for d1, d2 in zip_equal(dataset1, dataset2): + self.assertEqual(d1, d2)